

COMBIVERT **S6**

GEBRAUCHSANLEITUNG | INSTALLATION S6 GEHÄUSE 2

Originalanleitung
Dokument 20088319 DE 11

Vorwort

Die beschriebene Hard- und / oder Software sind Produkte der KEB Automation KG. Die beigefügten Unterlagen entsprechen dem bei Drucklegung gültigen Stand. Druckfehler, Irrtümer und technische Änderungen vorbehalten.

Signalwörter und Auszeichnungen

Bestimmte Tätigkeiten können während der Installation, des Betriebs oder danach Gefahren verursachen. Vor Anweisungen zu diesen Tätigkeiten stehen in der Dokumentation Warnhinweise. Am Gerät oder der Maschine befinden sich Gefahrenschilder. Ein Warnhinweis enthält Signalwörter, die in der folgenden Tabelle erklärt sind:

A GEFAHR

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen wird.

WARNUNG

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen kann.

A VORSICHT

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu leichter Verletzung führen kann.

ACHTUNG

Situation, die bei Nichtbeachtung der Hinweise zu Sachbeschädigungen führen kann.

EINSCHRÄNKUNG

Wird verwendet, wenn die Gültigkeit von Aussagen bestimmten Voraussetzungen unterliegt oder sich ein Ergebnis auf einen bestimmten Geltungsbereich beschränkt.

Wird verwendet, wenn durch die Beachtung der Hinweise das Ergebnis besser, ökonomischer oder störungsfreier wird.

Weitere Symbole

- Mit diesem Pfeil wird ein Handlungsschritt eingeleitet.
- / Mit Punkten oder Spiegelstrichen werden Aufzählungen markiert.
- => Querverweis auf ein anderes Kapitel oder eine andere Seite.

Hinweis auf weiterführende Dokumentation. www.keb.de/nc/de/suche

Gesetze und Richtlinien

Die KEB Automation KG bestätigt mit der EU-Konformitätserklärung und dem CE-Zeichen auf dem Gerätetypenschild, dass es den grundlegenden Sicherheitsanforderungen entspricht.

Die EU-Konformitätserklärung kann bei Bedarf über unsere Internetseite geladen werden. Weitere Informationen befinden sich im Kapitel "Zertifizierung".

Gewährleistung und Haftung

Die Gewährleistung und Haftung über Design-, Material- oder Verarbeitungsmängel für das erworbene Gerät ist den allgemeinen Verkaufsbedingungen zu entnehmen.

Hier finden Sie unsere allgemeinen Verkaufsbedingungen. www.keb.de/de/agb

Alle weiteren Absprachen oder Festlegungen bedürfen einer schriftlichen Bestätigung.

Unterstützung

Durch die Vielzahl der Einsatzmöglichkeiten kann nicht jeder denkbare Fall berücksichtigt werden. Sollten Sie weitere Informationen benötigen oder sollten Probleme auftreten, die in der Dokumentation nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über die örtliche Vertretung der KEB Automation KG erhalten.

Die Verwendung unserer Geräte in den Zielprodukten erfolgt außerhalb unserer Kontrollmöglichkeiten und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

Die in den technischen Unterlagen enthaltenen Informationen, sowie etwaige anwendungsspezifische Beratung in Wort, Schrift und durch Versuche, erfolgen nach bestem Wissen und Kenntnissen über den bestimmungsgemäßen Gebrauch. Sie gelten jedoch nur als unverbindliche Hinweise und Änderungen sind insbesondere aufgrund von technischen Änderungen ausdrücklich vorbehalten. Dies gilt auch in Bezug auf eine etwaige Verletzung von Schutzrechten Dritter. Eine Auswahl unserer Produkte im Hinblick auf ihre Eignung für den beabsichtigten Einsatz hat generell durch den Anwender zu erfolgen.

Prüfungen und Tests können nur im Rahmen der bestimmungsgemäßen Endverwendung des Produktes (Applikation) vom Kunden erfolgen. Sie sind zu wiederholen, auch wenn nur Teile von Hardware, Software oder die Geräteeinstellung modifiziert worden sind.

Urheberrecht

Der Kunde darf die Gebrauchsanleitung sowie weitere gerätebegleitenden Unterlagen oder Teile daraus für betriebseigene Zwecke verwenden. Die Urheberrechte liegen bei der KEB Automation KG und bleiben auch in vollem Umfang bestehen.

Dieses KEB-Produkt oder Teile davon können fremde Software, inkl. Freier und/oder Open Source Software enthalten. Sofern einschlägig, sind die Lizenzbestimmungen dieser Software in den Gebrauchsanleitungen enthalten. Die Gebrauchsanleitungen liegen Ihnen bereits vor, sind auf der Website von KEB zum Download frei verfügbar oder können bei dem jeweiligen KEB-Ansprechpartner gerne angefragt werden.

Andere Wort- und/oder Bildmarken sind Marken (™) oder eingetragene Marken (®) der jeweiligen Inhaber.

Inhaltsverzeichnis

	Vorwort	3
	Signalwörter und Auszeichnungen	3
	Weitere Symbole	3
	Gesetze und Richtlinien	4
	Gewährleistung und Haftung	4
	Unterstützung	4
	Urheberrecht	4
	Inhaltsverzeichnis	5
	Abbildungsverzeichnis	9
	Tabellenverzeichnis	10
	Glossar	
	Normen für Antriebsstromrichter	
	Produktnormen, die direkt für den Antriebsstromrichter gelten:	
	Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:	13
	Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:	14
4		4 -
1	Grundlegende Sicherheitshinweise	
	1.1 Zielgruppe	
	1.2 Transport, Lagerung und sachgemäße Handhabung	
	1.3 Einbau und Aufstellung	
	1.4 Elektrischer Anschluss	
	1.4.1 EMV-gerechte Installation	
	1.4.2 Spannungsprüfung	
	1.4.3 Isolationsmessung	
	1.5 Inbetriebnahme und Betrieb	
	1.6 Wartung	
	1.7 Instandhaltung	
	1.8 Entsorgung	21
2	Produktbeschreibung	22
	_	
	2.1 Bestimmungsgemäßer Gebrauch	
	2.1.1 Restgefahren	
	2.3 Produktmerkmale	
	2.4 Typenschlüssel	
	2.5 Typenschild	
	2.5.1 Konfigurierbare Optionen	
3	Technische Daten	
	3.1 Betriebsbedingungen	27
	3.1.1 Klimatische Umweltbedingungen	27
	3.1.2 Mechanische Umweltbedingungen	28

INHALTSVERZEICHNIS

	3.1.3 Chemisch/Mechanisch aktive Stoffe	28
	3.1.4 Elektrische Betriebsbedingungen	29
	3.1.4.1 Geräteeinstufung	29
	3.1.4.2 Elektromagnetische Verträglichkeit	29
	3.2 Abmessungen und Gewichte	30
	3.2.1 Einbauversion	30
	3.2.2 Schaltschrankeinbau	31
	3.3 Befestigungshinweise bei Schaltschrankmontage	32
	3.3.1 Einbautiefe	33
	3.4 Gerätedaten der 400 V-Geräte	_
	3.4.1 Übersicht der 400 V-Geräte	34
	3.4.2 Bemessungsbetrieb	34
	3.4.3 Spannungs- und Frequenzangaben der 400 V-Geräte	35
	3.4.3.1 Beispiel zur Berechnung der Motorspannung	35
	3.4.4 Ein- und Ausgangsströme/Überlast der 400 V-Geräte	36
	3.5 Gerätedaten der 230 V-Geräte	37
	3.5.1 Übersicht der 230 V-Geräte	37
	3.5.2 Bemessungsbetrieb	37
	3.5.3 Spannungs- und Frequenzangaben der 230 V-Geräte	38
	3.5.4 Ein- und Ausgangsströme/Überlast der 230 V-Geräte	39
	3.6 Allgemeine Daten	40
	3.6.1 Überlastcharakteristik (OL)	40
	3.6.1.1 Abschaltzeit in Abhängigkeit der Überlast bei 400 V-Geräten	41
	3.6.1.2 Abschaltzeit in Abhängigkeit der Überlast bei 230 V-Geräten	42
	3.6.1.3 Maximalstrom (OL2)	43
	3.6.2 Schaltfrequenz und Temperatur	
	3.6.3 Absicherung der Antriebsstromrichter	47
	3.6.3.1 400 V-Geräte, 3-phasig	47
	3.6.3.2 230 V-Geräte, 1-phasig	47
	3.6.4 DC-Zwischenkreis / Bremstransistorfunktion	48
	3.6.4.1 DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte	48
	3.6.4.2 DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte	48
	3.6.5 Verlustleistung 400 V-Geräte	49
	3.6.6 Verlustleistung 230 V-Geräte	
	3.6.7 Lüfter	
	3.6.7.1 Schaltverhalten des Lüfters	50
	3.6.7.2 Schaltpunkte des Lüfters	50
4	Installation und Anschluss	51
	4.1 Übersicht des COMBIVERT S6	
	4.2 Anschluss des Leistungsteils	53
	4.2.1 Anschluss der Spannungsversorgung	
	4.2.1.1 400 V-Geräte	53

	4.2.1.2 230 V-Geräte	53
	4.2.1.3 Netzklemmleiste X1A	54
	4.2.2 Ableitströme	55
	4.2.3 Schutz- und Funktionserde	55
	4.2.3.1 Schutzerdung	55
	4.2.3.2 Funktionserdung	56
	4.2.4 AC-Anschluss	57
	4.2.4.1 AC-Versorgung 230 V / 400 V 3-phasig	57
	4.2.4.2 AC-Versorgung 230 V 1-phasig	58
	4.2.4.3 Netzzuleitung	59
	4.2.5 DC-Anschluss	59
	4.2.5.1 Anschluss bei Gleichspannungsversorgung	59
	4.2.5.2 Klemmleiste X1B DC-Anschluss	59
	4.2.6 Anschluss des Motors	60
	4.2.6.1 Auswahl der Motorleitung	60
	4.2.6.2 Leitungsgeführte Störgrößen in Abhängigkeit der Motorleitungslänge bei AC-Versorgung	60
	4.2.6.3 Motorleitungslänge bei Betrieb an Gleichspannung (DC)	
	4.2.6.4 Motorleitungslänge bei Parallelbetrieb von Motoren	
	4.2.6.5 Motorleitungsquerschnitt	
	4.2.6.6 Verschaltung des Motors	
	4.2.6.7 Klemmleiste X1B Motoranschluss	61
	4.2.6.8 Verdrahtung des Motors	62
	4.2.7 Anschluss eines Bremswiderstandes	
	4.2.7.1 Klemmleiste X1B Anschluss Bremswiderstand	63
	4.2.7.2 Verwendung eigensicherer Bremswiderstände	63
	4.2.7.3 Verwendung nicht eigensicherer Bremswiderstände	
4.3	Bremsenansteuerung und Temperaturerfassung für K- und A-Steuerung	65
	4.3.1 Spezifikation und Anschluss der Bremsenansteuerung	65
	4.3.2 Spezifikation und Anschluss der Temperaturerfassung	66
	4.3.3 Betrieb ohne Temperaturerfassung	67
	4.3.4 Anschluss eines KTY-Sensors	67
	4.3.5 Anschluss von PTC, Temperaturschalter oder PT1000	68
4.4	Bremsenansteuerung und Temperaturerfassung für P-Steuerung	69
	4.4.1 Spezifikation und Anschluss der Bremsen-/Relaisansteuerung	69
	4.4.2 Spezifikation und Anschluss der Temperaturerfassung	70
	4.4.3 Betrieb ohne Temperaturerfassung	71
	4.4.4 Anschluss eines KTY-Sensors	71
	4.4.5 Anschluss von PTC, Temperaturschalter oder PT1000	72

INHALTSVERZEICHNIS

5	Zertifizierung	73
	5.1 CE-Kennzeichnung	73
	5.2 Funktionale Sicherheit	73
	5.3 Anhang zur Konformitätserklärung	73
	5.4 UL-Kennzeichnung	
	5.5 Weitere Informationen und Dokumentation	78
6	Änderungshistorie	79

Abbildungsverzeichnis

Abbildung 1:	Typenschild	25
Abbildung 2:	Abmessungen Einbauversion Gehäuse 2	30
Abbildung 3:	Einbauabstände	31
Abbildung 4:	Schaltschranklüftung	31
Abbildung 5:	Einbautiefe	33
Abbildung 6:	Abschaltzeit t in Abhängigkeit der Überlast I/In (OL) 400 V-Geräte	41
Abbildung 7:	Abschaltzeit t in Abhängigkeit der Überlast I/In (OL) 230 V-Geräte	42
Abbildung 8:	Überlastcharakteristik im unteren Drehzahlbereich (OL2)	43
Abbildung 9:	Blockschaltbild des Energieflusses	49
Abbildung 10:	Schaltverhalten des Lüfters	50
Abbildung 11:	Übersicht COMBIVERT S6	51
Abbildung 12:	Eingangsbeschaltung/Antriebsstromrichtertyp 400 V-Geräte	53
Abbildung 13:	Eingangsbeschaltung/Antriebsstromrichtertyp 230 V-Geräte	53
Abbildung 14:	Netzklemmleiste X1A	54
Abbildung 15:	Anschluss für Schutzerde	55
Abbildung 16:	Anschluss der Netzversorgung 3-phasige Geräte	57
Abbildung 17:	Anschluss der Netzversorgung 1-phasige Geräte	58
Abbildung 18:	Anschluss bei Gleichspannungsversorgung	59
Abbildung 19:	Klemmleiste X1B DC-Anschluss	59
Abbildung 20:	Klemmleiste X1B Motoranschluss	61
Abbildung 21:	Verdrahtung des Motors	62
Abbildung 22:	Klemmleiste X1B Anschluss Bremswiderstand	63
Abbildung 23:	Verdrahtung eines eigensicheren Bremswiderstands	63
Abbildung 20:	Klemmleiste X1B Motoranschluss	61
Abbildung 21:	Verdrahtung des Motors	62
Abbildung 22:	Klemmleiste X1B Anschluss Bremswiderstand	63
Abbildung 23:	Verdrahtung eines eigensicheren Bremswiderstands	63
Abbildung 24:	Belegung der Klemmleiste X1C für K- und A-Steuerung	65
Abbildung 25:	Beispiel zum Anschluss des Bremsenausgangs an X1C K/A	65
Abbildung 26:	Anschluss eines KTY-Sensors für K- und A-Steuerung	67
Abbildung 27:	Anschlussbeispiele verschiedener Temperatursensoren K/A	68
Abbildung 28:	Belegung der Klemmleiste X1C für P-Steuerung	69
Abbildung 29:	Anschluss eines KTY-Sensors für P-Steuerung	71
Abbildung 30:	Anschlussbeispiele verschiedener Temperatursensoren P-Steuerung	72

TABELLENVERZEICHNIS

Tabellenverzeichnis

Tabelle 1:	Typenschlüssel	24
Tabelle 2:	Konfigurierbare Optionen	26
Tabelle 3:	Klimatische Umweltbedingungen	27
Tabelle 4:	Mechanische Umweltbedingungen	28
Tabelle 5:	Chemisch/Mechanisch aktive Stoffe	28
Tabelle 6:	Geräteeinstufung	29
Tabelle 7:	Elektromagnetische Verträglichkeit	29
Tabelle 8:	Befestigungshinweise bei Schaltschrankmontage	32
Tabelle 9:	Übersicht Gerätedaten der 400 V-Geräte	34
Tabelle 10:	Eingangsspannungen und -frequenzen der 400 V-Geräte	35
Tabelle 11:	Eingangsspannungen für DC-Betrieb der 400 V-Geräte	35
Tabelle 12:	Ausgangsspannungen und -frequenzen der 400 V-Geräte	35
Tabelle 13:	DC-Schaltpegel 400 V-Geräte	35
Tabelle 14:	Beispiel zur Berechnung der Motorspannung	35
Tabelle 15:	Eingangsströme der 400 V-Geräte	36
Tabelle 16:	Ausgangsströme der 400 V-Geräte	36
Tabelle 17:	Übersicht Gerätedaten der 230 V-Geräte	37
Tabelle 18:	Eingangsspannungen und -frequenzen der 230 V-Geräte	38
Tabelle 19:	Eingangsspannungen für DC-Betrieb der 230 V-Geräte	38
Tabelle 20:	Ausgangsspannungen und -frequenzen der 230 V-Geräte	38
Tabelle 21:	DC-Schaltpegel der 230 V-Geräte	38
Tabelle 22:	Eingangsströme der 230 V-Geräte	39
Tabelle 23:	Ausgangsströme der 230 V-Geräte	39
Tabelle 24:	Frequenzabhängiger Maximalstrom für Gerätegröße 07 400 V-Geräte	44
Tabelle 25:	Frequenzabhängiger Maximalstrom für Gerätegröße 09 400 V-Geräte	44
Tabelle 26:	Frequenzabhängiger Maximalstrom für Gerätegröße 10 400 V-Geräte	44
Tabelle 27:	Frequenzabhängiger Maximalstrom für Gerätegröße 07 230 V-Geräte	45
Tabelle 28:	Frequenzabhängiger Maximalstrom für Gerätegröße 09 230 V-Geräte	45
Tabelle 29:	Schaltfrequenz und Temperatur	46
Tabelle 30:	Absicherung der Antriebsstromrichter 400 V-Geräte, 3-phasig	
Tabelle 31:	Absicherung der Antriebsstromrichter 230 V-Geräte, 1-phasig	47
Tabelle 32:	DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte	48
Tabelle 33:	DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte	48
Tabelle 34:	Verlustleistung 400 V-Geräte	49
Tabelle 35:	Verlustleistung 230 V-Geräte	49
Tabelle 36:	Ableitströme 1-phasig	55
Tabelle 37:	Ableitströme 3-phasig	55
Tabelle 38:	Maximale Motorleitungslänge bei AC-Versorgung	60
Tabelle 39:	Maximale Motorleitungslänge bei DC-Betrieb	
Tabelle 40:	Spezifikation des Temperatureingangs für K- und A-Steuerung	66
Tabelle 41:	Spezifikation der Bremsenansteuerung für P-Steuerung	69
Tabelle 42:	Spezifikation des Temperatureingangs für P-Steuerung	70
Tahelle 43:	Angewandte Normen	74

Glossar

0V	Erdpotenzialfreier Massepunkt	FU	Antriebsstromrichter
1ph	1-phasiges Netz	Gebernachbil-	Softwaregenerierter Geberausgang
3ph	3-phasiges Netz	dung	
AC	Wechselstrom oder -spannung	GND	Bezugspotenzial, Masse
AFE	Ab 07/2019 ersetzt AIC die bisherige	GTR7	Bremstransistor
	Bezeichnung AFE	Hersteller	Der Hersteller ist KEB, sofern nicht
AFE-Filter	Ab 07/2019 ersetzt AIC-Filter die		anders bezeichnet (z.B. als Ma-
	bisherige Bezeichnung AFE-Filter		schinen-, Motoren-, Fahrzeug- oder
AIC	Active Infeed Converter		Klebstoffhersteller)
AIC-Filter	Filter für Active Infeed Converter	HF-Filter	Hochfrequenzfilter zum Netz
Applikation	Die Applikation ist die bestimmungs-	Hiperface	Bidirektionale Geberschnittstelle der
	gemäße Verwendung des KEB-		Fa. Sick-Stegmann
	Produktes	HMI	Visuelle Benutzerschnittstelle
ASCL	Geberlose Regelung von Asynchron-		(Touchscreen)
	motoren	HSP5	Schnelles, serielles Protokoll
Auto motor	Automatische Motoridentifikation;	HTL	Inkrementelles Signal mit einer Aus-
ident.	Einmessen von Widerstand und		gangsspannung (bis 30V) -> TTL
	Induktivität	IEC	Internationale Norm
AWG	Amerikanische Kodierung für Lei-	IP xx	Schutzart (xx für Level)
	tungsquerschnitte	KEB-Produkt	Das KEB-Produkt ist das Produkt
B2B	Business-to-business		welches Gegenstand dieser Anlei-
BiSS	Open-Source-Echtzeitschnittstelle		tung ist
	für Sensoren und Aktoren (DIN	KTY	Silizium Temperatursensor (gepolt)
	5008)	Kunde	Der Kunde hat ein KEB-Produkt von
CAN	Feldbussystem		KEB erworben und integriert das
CDM	Vollständiges Antriebsmodul inkl.		KEB-Produkt in sein Produkt (Kun-
	Hilfsausrüstung (Schaltschrank)		den-Produkt) oder veräußert das
COMBIVERT	KEB Antriebsstromrichter		KEB-Produkt weiter (Händler)
COMBIVIS	KEB Inbetriebnahme- und Paramet-	MCM	Amerikanische Maßeinheit für große
	riersoftware		Leitungsquerschnitte
DC	Gleichstrom oder -spannung	Modulation	Bedeutet in der Antriebstechnik,
DI	Demineralisiertes Wasser, auch als		dass die Leistungshalbleiter ange-
	deionisiertes (DI) Wasser bezeichnet		steuert werden
DIN	Deutsches Institut für Normung	MTTF	Mittlere Lebensdauer bis zum Ausfall
DS 402	CiA DS 402 - CAN-Geräteprofil für	NN	Normalnull
20.02	Antriebe	Not-Aus	Abschalten der Spannungsversor-
ED	Einschaltdauer		gung im Notfall
EMS	Energy Management System	Not-Halt	Stillsetzen eines Antriebs im Notfall
EMV	Elektromagnetische Verträglichkeit		(nicht spannungslos)
EN	Europäische Norm	OC	Überstrom (Overcurrent)
EnDat	Bidirektionale Geberschnittstelle der	ОН	Überhitzung
LIIDat	Fa. Heidenhain	OL	Überlast
Endkunde	Der Endkunde ist der Verwender des	OSSD	Ausgangsschaltelement; Ausgangs-
Litakariae	Kunden-Produkts		signal, dass in regelmäßigen Ab-
EtherCAT	Echtzeit-Ethernet-Bussystem der Fa.		stände auf seine Abschaltbarkeit hin
Luicion	Beckhoff		geprüft wird. (Sicherheitstechnik)
Ethernet	Echtzeit-Bussystem - definiert Proto-	PDS	Leistungsantriebssystem inkl. Motor
	kolle, Stecker, Kabeltypen		und Meßfühler
FE	Funktionserde	PE	Schutzerde
FSoE	Funktionale Sicherheit über Ethernet	PELV	Sichere Schutzkleinspannung, ge-
. 502	- andonale dionemon abor Euromet		erdet

GLOSSAR

PFD	Begriff aus der Sicherheitstechnik (EN 61508-17) für die Größe der Fehlerwahrscheinlichkeit
PFH	Begriff aus der Sicherheitstechnik (EN 61508-17) für die Größe der Fehlerwahrscheinlichkeit pro Stunde
PT100	Temperatursensor mit R0=100Ω
PT1000	Temperatursensor mit R0=1000Ω
PTC	Kaltleiter zur Temperaturerfassung
PWM	Pulsweitenmodulation (auch Pulsbreitenmodulation)
RJ45	Modulare Steckverbindung mit 8 Leitungen
SCL	Geberlose Regelung von Synchron- motoren
SELV	Sichere Schutzkleinspannung, unge- erdet (<60V)
SIL	Der Sicherheitsintegritätslevel ist eine Maßeinheit zur Quantifizierung der Risikoreduzierung. Begriff aus der Sicherheitstechnik (EN 61508 -17)
SPS	Speicherprogrammierbare Steuerung
SS1	Sicherheitsfunktion "Sicherer Halt 1" gemäß IEC 61800-5-2
SSI	Synchron-serielle Schnittstelle für Geber
STO	Sicherheitsfunktion "sicher abgeschaltetes Drehmoment" gemäß IEC 61800-5-2
TTL	Inkrementelles Signal mit einer Ausgangsspannung bis 5 V
USB	Universell serieller Bus
VARAN	Echtzeit-Ethernet-Bussystem

Normen für Antriebsstromrichter

Produktnormen, die direkt für den Antriebsstromrichter gelten:

EN61800-2 Drehzahlveränderbare elektrische Antriebe Teil 2: Allgemeine Anforderungen - Festlegungen für die Bemessung von Niederspannungs-Wechselstrom-Antriebssystemen mit einstellbarer Frequenz (VDE 0160-102, IEC 61800-2) EN61800-3 Drehzahlveränderbare elektrische Antriebe. Teil 3: EMV-Anforderungen einschließlich spezieller Prüfverfahren (VDE 0160-103, IEC 61800-3) EN 61800-5-1 Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-1: Anforderungen an die Sicherheit - Elektrische, thermische und energetische Anforderungen (VDE 0160-105-1, IEC 61800-5-1) Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-2: EN61800-5-2 Anforderungen an die Sicherheit – Funktionale Sicherheit (VDE 0160-105-2, UL61800-5-2, IEC 22G/264/CD) UL61800-5-1 Amerikanische Version der EN 61800-5-1 mit "National Deviations"

Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:

EN 55011	Industrielle, wissenschaftliche und medizinische Geräte - Funkstörungen - Grenzwerte und Messverfahren (IEC/CISPR 11)
EN 55021	Störung von Mobilfunkübertragungen in Gegenwart von Impulsstörgrößen - Verfahren zur Beurteilung der Beeinträchtigung und Maßnahmen zur Verbesse- rung der Übertragungsqualität (IEC/CISPR/D/230/FDIS)
EN 60529	Schutzarten durch Gehäuse (IP-Code) (VDE 0470, IEC 60529)
EN 60664-1	Isolationskoordination für elektrische Betriebsmittel in Niederspannungsanlagen Teil 1: Grundsätze, Anforderungen und Prüfungen (IEC 60664-1)
EN 60721-3-1	Klassifizierung von Umgebungsbedingungen - Teil 3-1: Klassifizierung von Einflussgrößen in Gruppen und deren Grenzwerte - Hauptabschnitt 1: Langzeitlagerung (IEC 60721-3-1)
EN 60721-3-2	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 2: Transport (IEC 60721-3-2)
EN 60721-3-3	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 3: Ortsfester Einsatz, wetterge- schützt (IEC 60721-3-3)
EN 61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems
EN 61000-2-4	Elektromagnetische Verträglichkeit (EMV) - Teil 2-4: Umgebungsbedingungen; Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen in Industrieanlagen (IEC 61000-2-4)
EN 61000-4-2	Elektromagnetische Verträglichkeit (EMV) - Teil 4-2: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen die Entladung statischer Elektrizität (IEC 61000-4-2)
EN 61000-4-3	Elektromagnetische Verträglichkeit (EMV) - Teil 4-3: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder (IEC 61000-4-3)
EN 61000-4-4	Elektromagnetische Verträglichkeit (EMV) - Teil 4-4: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen schnelle transiente elektrische Störgrößen/ Burst (IEC 61000-4-4)
EN 61000-4-5	Elektromagnetische Verträglichkeit (EMV) - Teil 4-5: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen Stoßspannungen (IEC 61000-4-5)

NORMEN FÜR ANTRIEBSSTROMRICHTER

EN 61000-4-6	Elektromagnetische Verträglichkeit (EMV) - Teil 4-6: Prüf- und Messverfahren - Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder (IEC 61000-4-6)
EN 61000-4-34	Elektromagnetische Verträglichkeit (EMV) - Teil 4-34: Prüf- und Messver- fahren - Prüfungen der Störfestigkeit von Geräten und Einrichtungen mit einem Netzstrom > 16 A je Leiter gegen Spannungseinbrüche, Kurzzeitunterbre- chungen und Spannungsschwankungen (IEC 61000-4-34)
EN 61508-17	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme Teil 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme (VDE 0113-50, IEC 62061)
ENISO 13849-1	Sicherheit von Maschinen - Sicherheitsbezogene Teile von Steuerungen - Teil 1: Allgemeine Gestaltungsleitsätze (ISO 13849-1)

Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:

DGUV Vorschrift 3	Elektrische Anlagen und Betriebsmittel
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems
DIN EN 12502-15	Korrosionsschutz metallischer Werkstoffe - Teil 15
DINIEC 60364-5-54	Errichten von Niederspannungsanlagen - Teil 5-54: Auswahl und Errichtung elektrischer Betriebsmittel - Erdungsanlagen, Schutzleiter und Schutzpotential-ausgleichsleiter (IEC 64/1610/CD)
DIN VDE 0100-729	Errichten von Niederspannungsanlagen - Teil 7-729: Anforderungen für Betriebsstätten, Räume und Anlagen besonderer Art - Bedienungsgänge und Wartungsgänge (IEC 60364-7-729); Deutsche Übernahme HD 60364-7-729
EN 1037	Sicherheit von Maschinen - Vermeidung von unerwartetem Anlauf; Deutsche Fassung EN 1037
EN 60204-1	Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen Teil 1: Allgemeine Anforderungen (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Typgeprüfte und partiell typgeprüfte Kombinationen (IEC 60439-1)
EN 60947-7-1	Niederspannungsschaltgeräte - Teil 7-1: Hilfseinrichtungen - Reihenklemmen für Kupferleiter (IEC 60947-7-1:2009)
EN 60947-8	Niederspannungsschaltgeräte - Teil 8: Auslösegeräte für den eingebauten thermischen Schutz (PTC) von rotierenden elektrischen Maschinen (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN 61373	Bahnanwendungen - Betriebsmittel von Bahnfahrzeugen - Prüfungen für Schwingen und Schocken (IEC 61373)
EN 61439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Allgemeine Festlegungen (IEC 121B/40/CDV:2016); Deutsche Fassung FprEN 61439-1:2016
VGB R 455 P	Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen
DIN EN 60939-1	Passive Filter für die Unterdrückung von elektromagnetischen Störungen - Teil 1: Fachgrundspezifikation (IEC 60939-1:2005 + Corrigendum: 2005)

1 Grundlegende Sicherheitshinweise

Die Produkte sind nach dem Stand der Technik und anerkannten sicherheitstechnischen Regeln entwickelt und gebaut. Dennoch können bei der Verwendung funktionsbedingt Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Schäden an der Maschine und anderen Sachwerten entstehen.

Die folgenden Sicherheitshinweise sind vom Hersteller für den Bereich der elektrischen Antriebstechnik erstellt worden. Sie können durch örtliche, länder- oder anwendungsspezifische Sicherheitsvorschriften ergänzt werden. Sie bieten keinen Anspruch auf Vollständigkeit. Die Nichtbeachtung der Sicherheitshinweise durch den Kunden, Anwender oder sonstigen Dritten führt zum Verlust aller dadurch verursachten Ansprüche gegen den Hersteller.

ACHTUNG

Gefahren und Risiken durch Unkenntnis.

- ► Lesen Sie die Gebrauchsanleitung!
- ▶ Beachten Sie die Sicherheits- und Warnhinweise!
- ► Fragen Sie bei Unklarheiten nach!

1.1 Zielgruppe

Diese Gebrauchsanleitung ist ausschließlich für Elektrofachpersonal bestimmt. Elektrofachpersonal im Sinne dieser Anleitung muss über folgende Qualifikationen verfügen:

- Kenntnis und Verständnis der Sicherheitshinweise.
- · Fertigkeiten zur Aufstellung und Montage.
- Inbetriebnahme und Betrieb des Produktes.
- Verständnis über die Funktion in der eingesetzten Maschine.
- Erkennen von Gefahren und Risiken der elektrischen Antriebstechnik.
- Kenntnis über *DIN IEC 60364-5-54*.
- Kenntnis über nationale Unfallverhütungsvorschriften (z.B. DGUV Vorschrift 3).

1.2 Transport, Lagerung und sachgemäße Handhabung

Der Transport ist durch entsprechend unterwiesene Personen unter Beachtung der in dieser Anleitung angegebenen Umweltbedingungen durchzuführen. Die Antriebsstromrichter sind vor unzulässiger Beanspruchung zu schützen.

Transport von Antriebsstromrichtern mit einer Kantenlänge >75 cm

Der Transport per Gabelstapler ohne geeignete Hilfsmittel kann zu einer Durchbiegung des Kühlkörpers führen. Dies führt zur vorzeitigen Alterung bzw. Zerstörung interner Bauteile.

- ► Antriebsstromrichter auf geeigneten Paletten transportieren.
- ► Antriebsstromrichter nicht stapeln oder mit anderen schweren Gegenständen belasten.

Produkt enthält elektrostatisch gefährdete Bauelemente.

- Berührung vermeiden.
- ► ESD-Schutzkleidung tragen.

Lagern Sie das Produkt nicht

- in der Umgebung von aggressiven und/oder leitfähigen Flüssigkeiten oder Gasen.
- · in Bereichen mit direkter Sonneneinstrahlung.
- außerhalb der angegebenen Umweltbedingungen.

1.3 Einbau und Aufstellung

▲ GEFAHR

Nicht in explosionsgefährdeter Umgebung betreiben!

▶ Das Produkt ist nicht für den Einsatz in explosionsgefährdeter Umgebung vorgesehen.

A VORSICHT

Bauartbedingte Kanten und hohes Gewicht!

Quetschungen und Prellungen!

- ► Nie unter schwebende Lasten treten.
- Sicherheitsschuhe tragen.
- ▶ Produkt beim Einsatz von Hebewerkzeugen entsprechend sichern.

Um Schäden am und im Produkt vorzubeugen:

- Darauf achten, dass keine Bauelemente verbogen und/oder Isolationsabstände verändert werden.
- Bei mechanischen Defekten darf das Produkt nicht in Betrieb genommen werden. Die Einhaltung angewandter Normen ist nicht mehr gewährleistet.
- Es darf keine Feuchtigkeit oder Nebel in das Produkt eindringen.
- Das Eindringen von Staub ist zu vermeiden. Bei Einbau in ein staubdichtes Gehäuse ist auf ausreichende Wärmeabfuhr zu achten.
- Einbaulage und Mindestabstände zu umliegenden Elementen beachten. Lüftungsöffnungen nicht verdecken.
- Produkt entsprechend der angegebenen Schutzart montieren.
- Achten Sie darauf, dass bei der Montage und Verdrahtung keine Kleinteile (Bohrspäne, Schrauben usw.) in das Produkt fallen. Dies gilt auch für mechanische Komponenten, die während des Betriebes Kleinteile verlieren können.
- Geräteanschlüsse auf festen Sitz prüfen, um Übergangswiderstände und Funkenbildung zu vermeiden.
- · Produkt nicht begehen.
- Die Sicherheitshinweise sind aufzubewahren!

1.4 Elektrischer Anschluss

A GEFAHR

Elektrische Spannung an Klemmen und im Gerät!

Lebensgefahr durch Stromschlag!

- ► Niemals am offenen Gerät arbeiten oder offen liegende Teile berühren.
- ▶ Bei jeglichen Arbeiten am Gerät Versorgungsspannung abschalten, gegen Wiedereinschalten sichern und Spannungsfreiheit durch Messung feststellen.
- ► Warten bis alle Antriebe zum Stillstand gekommen sind, damit keine generatorische Energie erzeugt werden kann.
- ► Kondensatorentladezeit (5 Minuten) abwarten, ggf. DC-Spannung an den Klemmen messen.
- ➤ Sofern Personenschutz gefordert ist, für Antriebsstromrichter geeignete Schutzvorrichtungen einbauen.
- ► Vorgeschaltete Schutzeinrichtungen niemals, auch nicht zu Testzwecken überbrücken.
- ▶ Schutzleiter immer an Antriebsstromrichter und Motor anschließen.
- Zum Betrieb alle erforderlichen Abdeckungen und Schutzvorrichtungen anbringen.
- Schaltschrank im Betrieb geschlossen halten.
- ▶ Fehlerstrom: Dieses Produkt kann einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite dieses Produktes nur ein RCD oder RCM vom Typ B zulässig.
- ► Antriebsstromrichter mit einem Ableitstrom > 3,5 mA Wechselstrom (10 mA Gleichstrom) sind für einen ortsfesten Anschluss bestimmt. Schutzleiter sind gemäß den örtlichen Bestimmungen für Ausrüstungen mit hohen Ableitströmen nach EN 61800-5-1, EN 60204-1 oder DIN IEC 60364-5-54 auszulegen.

Wenn beim Errichten von Anlagen Personenschutz gefordert ist, müssen für Antriebsstromrichter geeignete Schutzvorrichtungen benutzt werden.

Anlagen, in die Antriebsstromrichter eingebaut sind, müssen ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen gemäß den jeweils gültigen Sicherheitsbestimmungen, z.B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften usw. ausgerüstet werden. Diese Hinweise sind auch bei CE gekennzeichneten Antriebsstromrichtern stets zu beachten.

Für einen störungsfreien und sicheren Betrieb sind folgende Hinweise zu beachten:

- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen.
- Leitungsquerschnitte und Sicherungen sind entsprechend der angegebenen Minimal-/ Maximalwerte für die Anwendung durch den Anwender zu dimensionieren.
- Die Verdrahtung ist mit flexibler Kupferleitung für eine Temperatur > 75°C auszuführen.
- Der Anschluss der Antriebsstromrichter ist nur an symmetrische Netze mit einer Spannung Phase (L1, L2, L3) gegen Nulleiter/Erde (N/PE) von maximal 300 V zulässig. Bei Versorgungsnetzen mit höheren Spannungen muss ein entsprechender Trenntransformator vorgeschaltet werden. Bei Nichtbeachtung gilt die Steuerung nicht mehr als PELV-Stromkreis.
- Der Errichter von Anlagen oder Maschinen hat sicherzustellen, dass bei einem vorhandenen oder neu verdrahteten Stromkreis mit PELV die Forderungen erfüllt bleiben.
- Bei Antriebsstromrichtern ohne sichere Trennung vom Versorgungskreis (gemäß EN 61800-5-1) sind alle Steuerleitungen in weitere Schutzmaßnahmen (z.B. doppelt isoliert oder abgeschirmt, geerdet und isoliert) einzubeziehen.
- Bei Verwendung von Komponenten, die keine potenzialgetrennten Ein-/Ausgänge verwenden, ist es erforderlich, dass zwischen den zu verbindenden Komponenten Potenzialgleichheit besteht (z.B. durch Ausgleichsleitung). Bei Missachtung können die Komponenten durch Ausgleichströme zerstört werden.

1.4.1 EMV-gerechte Installation

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Kunden.

Hinweise zur EMV-gerechten Installation sind hier zu finden

1.4.2 Spannungsprüfung

Eine Prüfung mit AC-Spannung (gemäß *EN 60204-1* Kapitel 18.4) darf nicht durchgeführt werden, da eine Gefährdung für die Leistungshalbleiter im Antriebsstromrichter besteht.

Aufgrund der Funkentstörkondensatoren wird sich der Prüfgenerator sofort mit Stromfehler abschalten.

Nach *EN 60204-1* ist es zulässig, bereits getestete Komponenten abzuklemmen. Antriebsstromrichter der KEB Automation KG werden gemäß Produktnorm zu 100% spannungsgeprüft ab Werk geliefert.

1.4.3 Isolationsmessung

Eine Isolationsmessung (gemäß *EN 60204-1* Kapitel 18.3) mit DC 500V ist zulässig, wenn alle Anschlüsse im Leistungsteil (netzgebundenes Potenzial) und alle Steueranschlüsse mit PE gebrückt sind. Der Isolationswiderstand des jeweiligen Produkts ist in den technischen Daten zu finden.

1.5 Inbetriebnahme und Betrieb

Die Inbetriebnahme (d.h. die Aufnahme des bestimmungsgemäßen Betriebes) ist solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtlinie entspricht; *EN 60204-1* ist zu beachten.

WARNUNG

Softwareschutz und Programmierung!

Gefährdung durch ungewolltes Verhalten des Antriebes!

- ► Insbesondere bei Erstinbetriebnahme oder Austausch des Antriebsstromrichters prüfen, ob Parametrierung zur Applikation passt.
- ▶ Die alleinige Absicherung einer Anlage durch Softwareschutzfunktionen ist nicht ausreichend. Unbedingt vom Antriebsstromrichter unabhängige Schutzmaßnahmen (z.B. Endschalter) installieren.
- ► Motoren gegen selbsttätigen Anlauf sichern.

A VORSICHT

Hohe Temperaturen an Kühlkörper und Kühlflüssigkeit!

Verbrennung der Haut!

- ► Heiße Oberflächen berührungssicher abdecken.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.
- ▶ Oberfläche und Kühlflüssigkeitsleitungen vor Berührung prüfen.
- ► Vor jeglichen Arbeiten Gerät abkühlen lassen.
- Während des Betriebes sind alle Abdeckungen und Türen geschlossen zu halten.
- Nur für das Gerät zugelassenes Zubehör verwenden.
- Anschlusskontakte, Stromschienen oder Kabelenden nie berühren.

Sofern ein Antriebsstromrichter mit Elektrolytkondensatoren im Gleichspannungszwischenkreis (=> technische Daten) länger als ein Jahr nicht in Betrieb war, beachten Sie folgende Hinweise.

www.keb.de/fileadmin/media/Manuals/knowledge/04_techinfo/00_general/ti_format_capacitors_0400_0001_deu.pdf

ACHTUNG

Dauerbetrieb (S1) mit Auslastung > 60 % oder Motorbemesungsleistung ab 55 kW!

Vorzeitige Alterung der Elektrolytkondensatoren!

► Netzdrossel mit *U_k* = 4% zwingend erforderlich.

Schalten am Ausgang

Bei Einzelantrieben ist das Schalten zwischen Motor und Antriebsstromrichter während des Betriebes zu vermeiden, da es zum Ansprechen der Schutzeinrichtungen führen kann. Ist das Schalten nicht zu vermeiden, muss die Funktion "Drehzahlsuche" aktiviert sein. Diese darf erst nach dem Schließen des Motorschützes eingeleitet werden (z.B. durch Schalten der Reglerfreigabe).

Bei Mehrmotorenantrieben ist das Zu- und Abschalten zulässig, wenn mindestens ein Motor während des Schaltvorganges zugeschaltet ist. Der Antriebsstromrichter ist auf die auftretenden Anlaufströme zu dimensionieren.

Wenn der Motor bei einem Neustart (Netz ein) des Antriebsstromrichters noch läuft (z.B. durch große Schwungmassen), muss die Funktion "Drehzahlsuche" aktiviert sein.

Schalten am Eingang

Bei Applikationen, die zyklisches Aus- und Einschalten des Antriebsstromrichters erfordern, muss nach dem letzten Einschalten eine Zeit von mindestens 5 min vergangen sein. Werden kürzere Taktzeiten benötigt, setzen Sie sich bitte mit der KEB Automation KG in Verbindung.

Kurzschlussfestigkeit

Die Antriebsstromrichter sind bedingt kurzschlussfest. Nach dem Zurücksetzen der internen Schutzeinrichtungen ist die bestimmungsgemäße Funktion gewährleistet.

Ausnahmen:

- Treten am Ausgang wiederholt Erd- oder Kurzschlüsse auf, kann dies zu einem Defekt am Gerät führen.
- Tritt ein Kurzschluss während des generatorischen Betriebes (zweiter bzw. vierter Quadrant, Rückspeisung in den Zwischenkreis) auf, kann dies zu einem Defekt am Gerät führen.

1.6 Wartung

Die folgenden Wartungsarbeiten sind nach Bedarf, mindestens jedoch einmal pro Jahr, durch autorisiertes und eingewiesenes Personal durchzuführen.

- ▶ Anlage auf lose Schrauben und Stecker überprüfen und ggf. festziehen.
- ► Antriebsstromrichter von Schmutz und Staubablagerungen befreien. Dabei besonders auf Kühlrippen und Schutzgitter von Ventilatoren achten.
- ▶ Ab- und Zuluftfilter vom Schaltschrank überprüfen bzw. reinigen.
- ► Funktion der Ventilatoren des Antriebsstromrichters überprüfen. Bei hörbaren Vibrationen oder Quietschen sind die Ventilatoren zu ersetzen.
- ▶ Bei flüssigkeitsgekühlten Antriebsstromrichtern ist eine Sichtprüfung des Kühlkreislaufs auf Dichtigkeit und Korrosion durchzuführen. Soll eine Anlage für einen längeren Zeitraum abgeschaltet werden, ist der Kühlkreislauf vollständig zu entleeren. Bei Temperaturen unter 0°C muss der Kühlkreislauf zusätzlich mit Druckluft ausgeblasen werden.

1.7 Instandhaltung

Bei Betriebsstörungen, ungewöhnlichen Geräuschen oder Gerüchen informieren Sie eine dafür zuständige Person!

A GEFAHR

Unbefugter Austausch, Reparatur und Modifikationen!

Unvorhersehbare Fehlfunktionen!

- ▶ Die Funktion des Antriebsstromrichters ist von seiner Parametrierung abhängig. Niemals ohne Kenntnis der Applikation austauschen.
- ► Modifikation oder Instandsetzung ist nur durch von der KEB Automation KG autorisiertem Personal zulässig.
- ► Nur originale Herstellerteile verwenden.
- Zuwiderhandlung hebt die Haftung für daraus entstehende Folgen auf

Im Fehlerfall wenden Sie sich an den Maschinenhersteller. Nur dieser kennt die Parametrierung des eingesetzten Antriebsstromrichters und kann ein entsprechendes Ersatzgerät liefern oder die Instandhaltung veranlassen.

1.8 Entsorgung

Elektronische Geräte der KEB Automation KG sind für die professionelle, gewerbliche Weiterverarbeitung bestimmt (sog. B2B-Geräte).

Hersteller von B2B-Geräten sind verpflichtet, Geräte, die nach dem 14.08.2018 hergestellt wurden, zurückzunehmen und zu verwerten. Diese Geräte dürfen grundsätzlich nicht an kommunalen Sammelstellen abgegeben werden.

Sofern keine abweichende Vereinbarung zwischen Kunde und KEB getroffen wurde oder keine abweichende zwingende gesetzliche Regelung besteht, können so gekennzeichnete KEB-Produkte zurückgegeben werden. Firma und Stichwort zur Rückgabestelle sind u.a. Liste zu entnehmen. Versandkosten gehen zu Lasten des Kunden. Die Geräte werden daraufhin fachgerecht verwertet und entsorgt.

In der folgenden Tabelle sind die Eintragsnummern länderspezifisch aufgeführt. KEB Adressen finden Sie auf unserer Webseite.

Rücknahme durch	WEEE-Registrierungsnr.		Stichwort:
Deutschland			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Frankreich			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Italien			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"
Österreich			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"
Spanien			
KEB Automation KG	RII-AEE	7427	Palabra clave "Retirada RAEE"

Die Verpackung ist dem Papier- und Kartonage-Recycling zuzuführen.

2 Produktbeschreibung

Bei der Gerätereihe COMBIVERT S6 handelt es sich um Antriebsstromrichter, die für den Betrieb an synchronen und asynchronen Motoren optimiert sind. Die integrierte Sicherheitsfunktion STO ist für den Einsatz in sicherheitsgerichteten Anwendungen entwickelt worden.

Der COMBIVERT erfüllt die Anforderungen der Niederspannungsrichtlinie. Die harmonisierten Normen der Reihe *EN 61800-5-1* für Antriebsstromrichter werden angewendet.

Der COMBIVERT ist ein Produkt mit eingeschränkter Erhältlichkeit nach *EN 61800-3*. Dieses Produkt kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann es für den Betreiber erforderlich sein, entsprechende Maßnahmen durchzuführen.

Abhängig von der Ausführung sind die Maschinenrichtlinie, EMV-Richtlinie, Niederspannungsrichtline sowie weitere Richtlinien und Verordnungen zu beachten.

2.1 Bestimmungsgemäßer Gebrauch

Der COMBIVERT dient ausschließlich zur Steuerung und Regelung von Drehstrommotoren. Er ist zum Einbau in elektrische Anlagen oder Maschinen bestimmt.

Die technischen Daten sowie die Angaben zu Anschlussbedingungen sind dem Typenschild und der Gebrauchsanleitung zu entnehmen und unbedingt einzuhalten.

Die bei der KEB Automation KG eingesetzten Halbleiter und Bauteile sind für den Einsatz in industriellen Produkten entwickelt und ausgelegt.

Einschränkung

Wenn das Produkt in Maschinen eingesetzt wird, die unter Ausnahmebedingungen arbeiten, lebenswichtige Funktionen, lebenserhaltende Maßnahmen oder eine außergewöhnliche Sicherheitsstufe erfüllen, ist die erforderliche Zuverlässigkeit und Sicherheit durch den Maschinenbauer sicherzustellen und zu gewährleisten.

2.1.1 Restgefahren

Trotz bestimmungsgemäßen Gebrauch kann der Antriebsstromrichter im Fehlerfall, bei falscher Parametrierung, durch fehlerhaften Anschluss oder nicht fachmännische Eingriffe und Reparaturen unvorhersehbare Betriebszustände annehmen. Dies können sein:

- · Falsche Drehrichtung
- Zu hohe Motordrehzahl
- Motor läuft in die Begrenzung
- · Motor kann auch im Stillstand unter Spannung stehen
- · Automatischer Anlauf

2.2 Nicht bestimmungsgemäßer Gebrauch

Der Betrieb anderer elektrischer Verbraucher ist untersagt und kann zur Zerstörung der Geräte führen. Der Betrieb unserer Produkte außerhalb der in den technischen Daten angegebenen Grenzwerte führt zum Verlust jeglicher Schadensersatzansprüche.

2.3 Produktmerkmale

Diese Gebrauchsanleitung beschreibt die Leistungsteile folgender Geräte:

Gerätetyp: Antriebsstromrichter Serie: COMBIVERT S6

Leistungsbereich: 0,75...2,2kW 400 V 3-phasig

0,75...1,5 kW 230 V 1-phasig

Gehäuse: 2

Der COMBIVERT S6 zeichnet sich durch die folgenden Merkmale aus:

- Für Asynchron-, Synchron-, IPM- oder Synchronreluktanzmotoren
- Mit Geber oder geberlos geregelt SCL und ASCL f
 ür exakte Drehzahlregelung
- Motortemperaturüberwachung PTC, KTY oder PT1000
- Zweikanaliges Multi-Geber-Interface
- · Integrierter Bremstransistor
- · Integrierte Bremsenansteuerung
- Integrierte Sicherheitsfunktionalität
- Basisfunktion STO in der Kompaktversion
- Zusätzliche High Level Safety in der Applikationsversion
- · Echtzeitfähige Ethernet Schnittstellen
- Folgende Feldbussysteme werden bei S6 direkt unterstützt: CAN, VARAN
- RS232/485 f
 ür Diagnose oder Anzeige
- · Buchformat für platzsparenden Schaltschrankaufbau
- Direkter Netzanschluss für 230 V und 400 V Netze, alternativ auch DC-Eingang 260...750 V
- Ableitstromarmer Netzfilter (<5 mA) integriert, optional ohne Filter
- Hohe Überlast für beste Dynamik
- Unterstützt bestehende Maschinenkonzepte mit 8 digitale und 2 analoge Eingänge,
 2 digitale Ausgänge + 1 Relais und 1 analoger Ausgang 0...10 V

Aufgrund des breiten Spannungsbereichs lassen sich die 3-phasigen 400 V-Geräte auch an 230 V-Applikationen betreiben, => "5.4 UL-Kennzeichnung".

2.4 Typenschlüssel

x x S 6 x x x - x x x x Reserviert 0: Reserviert Reserviert 0: Reserviert **KOMPAKT** 1: Multi Encoder Interface, EtherCAT 1) 2: Multi Encoder Interface, VARAN **APPLIKATION** 1: Realtime Ethernet Modul, Multi Encoder Interface Ausführung Steuerung **PRO** 1: Multi Encoder Interface / Ethernet-Feldbus-Interface kein Encoder / Ethernet-Feldbus-Interface / Sicheres Relais Multi Encoder Interface / Ethernet-Feldbus-Interface / Sicheres Relais 1: AC 480 V 3-phasig mit HF-Filter 2: AC 480 V 3-phasig ohne HF-Filter 2) Ausführung Leistungsteil 3: AC 230 V 1-phasig mit HF-Filter 4: AC 230 V 1-phasig ohne HF-Filter 2) Gehäuse 2, 4 1: Typ 1 für Strg A (STO/SBC) oder STO für Strg K Sicherheitsmodul 3: Typ 3 für Strg A (STO/SBC/SLS usw.) 5: Typ 5 STO / SLS / etc. FSOE

** Fther**CAT**

Typenschlüssel

Tabelle 1:

EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH, Deutschland.

A: APPLIKATION
K: KOMPAKT

COMBIVERT S6

P: PRO

07...14 3)

Steuerungstyp

Baureihe

Gerätegröße

Der Typenschlüssel dient nicht als Bestellcode, sondern ausschließlich zur Identifikation!

²⁾ Zur Einhaltung der Grenzwerte gemäß EN 61800-3 ist bei diesen Geräten ein externer Filter erforderlich.

³⁾ Gerätegröße 14 ist nur in der Ausführung ohne integrierten HF-Filter verfügbar.

2.5 Typenschild

PRODUKTBESCHREIBUNG

2.5.1 Konfigurierbare Optionen

Merkmale	Merkmalswerte	Beschreibung		
Software	SWxxx 1)	Softwarestand des Antriebsstromrichters		
7	Axxx 1)	Gewähltes Zubehör		
Zubehör	NAK	Kein Zubehör		
Auggangafraguan zfrajashaltung	LIM	Begrenzung auf 599 Hz		
Ausgangsfrequenzfreischaltung	ULO	> 599 Hz freigeschaltet		
Courabulaietus	WSTD	Gewährleistung - Standard		
Gewährleistung	Wxxx 1)	Gewährleistungsverlängerung		
Deremetrierung	PSTD	Parametrierung - Standard		
Parametrierung	Pxxx 1)	Parametrierung - Kundenspezifisch		
Transport indicate	LSTD	Logo - Standard		
Typenschildlogo	Lxxx 1)	Logo - Kundenspezifisch		
Tabelle 2: Konfigurierbare Optionen				

¹⁾ Die Bezeichnung "x" steht für einen variablen Wert.

3 Technische Daten

Sofern nicht anders gekennzeichnet, beziehen sich alle elektrischen Daten im folgenden Kapitel auf ein 3-phasiges Wechselspannungsnetz.

3.1 Betriebsbedingungen

3.1.1 Klimatische Umweltbedingungen

Lagerung	Norm	Klasse	Bemerkungen
Umgebungstemperatur	EN 60721-3-1	1K4	-2555°C
Relative Luftfeuchte	EN 60721-3-1	1K3	595% (ohne Kondensation)
Lagerungshöhe	_	_	Max. 3000 m über NN
Transport	Norm	Klasse	Bemerkungen
Umgebungstemperatur	EN 60721-3-2	2K3	-2570°C
Relative Luftfeuchte	EN 60721-3-2	2K3	95% bei 40°C (ohne Kondensation)
Betrieb	Norm	Klasse	Bemerkungen
Umgebungstemperatur	EN 60721-3-3	3K3	540°C (erweitert auf -1045°C)
Kühllufteintrittstemperatur	_	_	540°C (-1045°C)
Relative Luftfeuchte	EN 60721-3-3	3K3	585% (ohne Kondensation)
			Schutz gegen Fremdkörper > ø12,5 mm
Bau- und Schutzart	EN 60529	IP20	Kein Schutz gegen Wasser
Daa ana oona Ean	2.1 00020	20	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist.
			Max. 2000 m über NN
			Ab 1000 m ist eine Leistungsreduzierung von 1% pro 100 m zu berücksichtigen.
Aufstellhöhe	_	_	Ab 2000 m hat die Steuerkarte zum Netz nur noch Basisisolation. Es sind zusätzli- che Maßnahmen bei der Verdrahtung der Steuerung vorzunehmen.

27

BETRIEBSBEDINGUNGEN

3.1.2 Mechanische Umweltbedingungen

Lagerung	Norm	Klasse	Bemerkungen
Sobwingungagranzwarta	EN 60721-3-1	1M2	Schwingungsamplitude 1,5 mm (29 Hz)
Schwingungsgrenzwerte EN 60721-3-1 1M2		Beschleunigungsamplitude 5 m/s² (9200 Hz)	
Schockgrenzwerte	EN 60721-3-1	1M2	40 m/s²; 22 ms
Transport	Norm	Klasse	Bemerkungen
			Schwingungsamplitude 3,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 60721-3-2	2M1	Beschleunigungsamplitude 10 m/s² (9200 Hz)
			(Beschleunigungsamplitude 15 m/s² (200500 Hz))¹)
Schockgrenzwerte	EN 60721-3-2	2M1	100 m/s²; 11 ms
Betrieb	Norm	Klasse	Bemerkungen
	EN 60721-3-3	2114	Schwingungsamplitude 3,0 mm (29 Hz)
Cobwingungagran	EN 00721-3-3	3M4	Beschleunigungsamplitude 10 m/s² (9200 Hz)
Schwingungsgrenzwerte	EN 61800-5-1		Schwingungsamplitude 0,075 mm (1057 Hz)
	EN 01000-5-1	_	Beschleunigungsamplitude 10 m/s² (57150 Hz)
Schockgrenzwerte	EN 60721-3-3	3M4	100 m/s²; 11 ms
Tabelle 4: Mechanische U	mweltbedingunger	1	

¹⁾ Nicht getestet.

3.1.3 Chemisch/Mechanisch aktive Stoffe

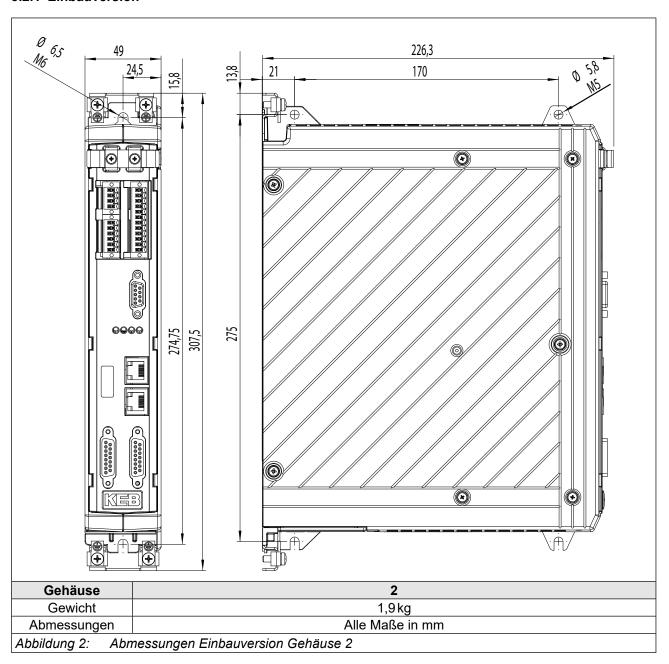
Lagerung		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-11	1C2	_
Kontamination	Feststoffe	EN 00721-3-11	1S2	-
Transport		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-22	2C2	_
Kontamination	Feststoffe	EN 00721-3-22	2S2	-
Betrieb		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-3	3C2	_
Nontaniination	Feststoffe	EN 00/21-3-3	3S2	-
Tabelle 5: Chemisch/Mechanisch aktive Stoffe				

3.1.4 Elektrische Betriebsbedingungen

3.1.4.1 Geräteeinstufung

Anforderung	Norm	Klasse	Bemerkungen
Überenannungsketegerie	EN 61800-5-1	III	-
Uberspannungskategorie	EN 60664-1	111	-
Verschmutzungsgrad	EN 60664-1	2	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist
Tabelle 6: Geräteeinstufung			

3.1.4.2 Elektromagnetische Verträglichkeit

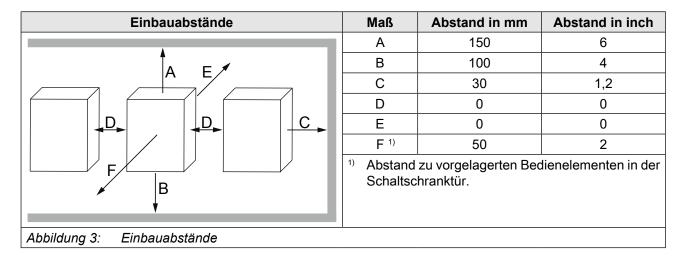

Bei Geräten ohne internen Filter ist zur Einhaltung der folgenden Grenzwerte ein externer Filter erforderlich.

EMV-Störaussendung	Norm	Klasse	Bemerkungen
Leitungsgebundene Störungen	EN 61800-3	C2	-
Abgestrahlte Störungen	EN 61800-3	C2	-
Störfestigkeit	Norm	Pegel	Bemerkungen
Statische Entladungen	EN 61000-4-2	8kV	AD (Luftentladung)
Statische Entiadungen	EN 61000-4-2	4 kV	CD (Kontaktentladung)
Burst - Anschlüsse für pro- zessnahe Mess- und Regel- funktionen und Signalschnitt- stellen	EN 61000-4-4	2kV	_
Burst - Leistungsschnittstellen	EN 61000-4-4	4 kV	-
Surge Leistungeschnittstellen	EN 61000-4-5	1kV	Phase-Phase
Surge - Leistungsschnittstellen	EN 61000-4-5	2kV	Phase-Erde
Leitungsgeführte Störgrößen, induziert durch hochfrequente Felder	EN 61000-4-6	10 V	0,1580 MHz
		10 V/m	80 MHz1 GHz
Elektromagnetische Felder	EN 61000-4-3	3V/m	1,42 GHz
		1 V/m	22,7 GHz
Spannungsschwankungen/	EN 61000-2-1		-15 %+10 %
-einbrüche	EN 61000-4-34		90%
Frequenzänderungen	EN 61000-2-4	_	≤ 2 %
Spannungsabweichungen	EN 61000-2-4		±10%
Spannungsunsymmetrien	EN 61000-2-4	_	≤ 3 %
Tabelle 7: Elektromagnetisch	ne Verträglichkeit		_

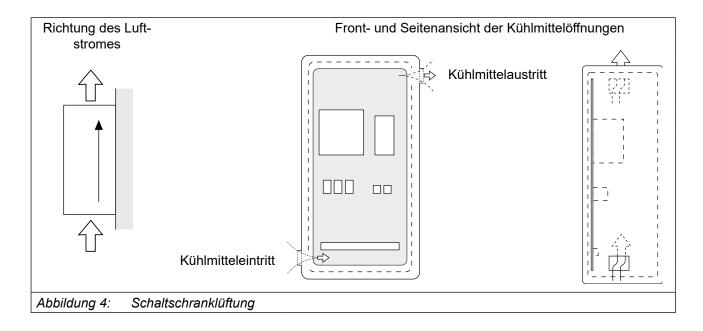
29

3.2 Abmessungen und Gewichte

3.2.1 Einbauversion


3.2.2 Schaltschrankeinbau

Verlustleistung zur Schaltschrankauslegung => "3.6.5 Verlustleistung 400 V-Geräte". Abhängig von der Betriebsart/Auslastung kann hier ein geringerer Wert angesetzt werden.



Montage des Antriebsstromrichters

Für einen betriebssicheren Betrieb, muss der Antriebsstromrichter ohne Abstand auf einer glatten, geschlossenen, metallisch blanken Montageplatte montiert werden.

Wenn konstruktionsbedingt nicht auf eine Innenraumlüftung des Schaltschrankes verzichtet werden kann, muss durch entsprechende Filter der Ansaugung von Fremdkörpern entgegen gewirkt werden.

3.3 Befestigungshinweise bei Schaltschrankmontage

Zur Montage der Antriebsstromrichter wurden folgende Befestigungsmaterialien mit der entsprechenden Güte von KEB getestet.

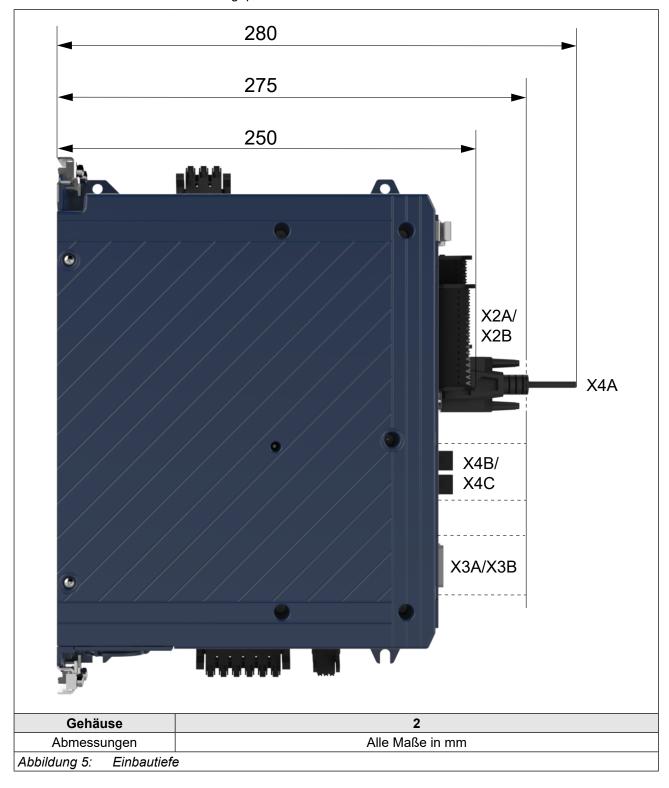
Benötigtes Material	Anzugsdrehmoment	
Vershinghrough (SO 7045, MC, 0.0	3,2 Nm	
Kombischraube <i>ISO 7045</i> - M6 - 8.8	29lb inch	
Tabelle 8: Befestigungshinweise bei Schaltschrankmontage		

ACHTUNG

Verwendung von anderem Befestigungsmaterial

➤ Das alternativ gewählte Befestigungsmaterial muss die oben genannten Werkstoffkennwerte (Güte) und Anzugsdrehmomente einhalten!

Die Verwendung anderer Befestigungsmaterialien erfolgt außerhalb der Kontrollmöglichkeiten von KEB und liegt daher ausschließlich im Verantwortungsbereich des Kunden.



3.3.1 Einbautiefe

Für die verschiedenen Anschlüsse wird empfohlen, den angegebenen Abstand zu vorgelagerten Bauelementen einzuhalten.

Die angegebenen Werte sind Richtwerte. Die tatsächliche Einbautiefe muss vom Anweder individuell geprüft werden.

3.4 Gerätedaten der 400 V-Geräte

3.4.1 Übersicht der 400 V-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motornennstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			07	09	10
Gehäuse				2	
Ausgangsbemessungsscheinleistung Sout		Sout / kVA	1,8	2,8	4,0
Max. Motorbemessungsleistung		Pmot / kW	0,75	1,5	2,2
Ausgangsbemessungsstrom		In / A	2,6	4,1	5,8
Ausgangsspannung		Uout / V	0 <i>U</i> in	oder 0 <i>Uir</i>	_dc/√2
Ausgangsphasen				3	
Ausgangsfrequenz	1)	fout / Hz		0599	
Ausgangsbemessungsüberlast (60s)	2)	160s / %		200	
Ausgangsbemessungsüberlast (3s)	2)	<i>I</i> 3s / %	250		
Abschaltstrom	2)	loc / %	300		
Bemessungsschaltfrequenz	fsn / kHz			8	
Eingangsbemessungsstrom		Iin / A	3,6	6,0	8,0
Eingangsbemessungsspannung		Un / V		400	
Eingangsbemessungsspannung UL		UN_UL/V	480		
Eingangsspannungsbereich	Eingangsspannungsbereich Uin / \		184550		
Eingangsspannungsbereich DC-Versorgung		Uin_dc / ∨	n_dc / V 260750		
Netzphasen				3	
Netzfrequenz		fn / Hz		50/60	
Maximalstrom 0 Hz/50 Hz bei fs = 4 kHz		lout_max / %	215/300	193/300	155/300
Maximalstrom 0 Hz/50 Hz bei fs = 8 kHz		lout_max / %	162/300	132/300	103/275
Maximalstrom 0 Hz/50 Hz bei fs = 16 kHz		lout_max / %	92/292	73/200	50/163
Isolationswiderstand @ <i>U_dc</i> = 500 V		Riso / MΩ		> 15	
Zwischenkreiskapazität		C / µF	195	195	235
Tabelle 9: Übersicht Gerätedaten der 400 V-Ger	äte				

Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

3.4.2 Bemessungsbetrieb

Sämtliche Bemessungswerte beziehen sich auf einen Bemessungsbetrieb bei $U_N = 400 \text{ V}$, Bemessungsschaltfrequenz f_{SN} und einer Ausgangsfrequenz $f_{Out} = 50 \text{ Hz}$.

²⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

3.4.3 Spannungs- und Frequenzangaben der 400 V-Geräte

Eingangsspannungen und -frequenzen			
Eingangsbemessungsspannung	Un / V	400	
Eingangsbemessungsspannung UL	Un_ul / V	230 / 480	
Eingangsspannungsbereich	Uin / V	184550	
Netzphasen		3	
Netzfrequenz	f _N / Hz	50/60	
Netzfrequenztoleranz	±f∧ / Hz	±2	
Tabelle 10: Eingangsspannungen und -frequenzen der 400 V-Geräte			

Eingangsspannungen für DC-Betrieb			
Eingangsbemessungsspannung DC	U _{N_dc} / V	565	
Eingangsbemessungsspannung DC UL	U _{N_dc_UL} /V	680	
Eingangsspannungsbereich DC-Versorgung	Uin_dc / V	260750 ±0	
Tabelle 11: Eingangsspannungen für DC-Betrieb der 400 V-Geräte			

Ausgangsspannungen und -frequenzen			
Ausgangsspannung bei AC-Versorgung	1)	Uout / V	3 x 0 <i>U</i> in
Ausgangsspannung bei DC-Versorgung	1)	Uout_dc / V	3 x 0 <i>Uin_dc</i> /√2
Ausgangsfrequenz	2)	fout / Hz	0599
Tabelle 12: Ausgangsspannungen und -frequenzen der 400 V-Geräte			

Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren (=> "3.4.3.1 Beispiel zur Berechnung der Motorspannung").

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

DC-Schaltpegel			
DC-Abschaltpegel "Fehler! Unterspannung"		<i>U</i> UP_dc / V	240
DC-Schaltpegel Bremstransistor	1)	U _{B_dc} / V	780
DC-Abschaltpegel "Fehler! Überspannung"		UOP_dc / V	840
Tabelle 13: DC-Schaltpegel 400 V-Geräte			

Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

3.4.3.1 Beispiel zur Berechnung der Motorspannung

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Netzspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel:				
Netzdrossel Uk	4					
Antriebssteller gesteuert	4	Geregelter Antriebssteller mit Netz- und Motordrossel an				
Antriebssteller geregelt	8	einem weichen Netz:				
Motordrossel Uk	1	400 V Netzspannung - 15% = 340 V Motorspannung				
Weiches Netz	2					
Tabelle 14: Beispiel zur Berechnung der Motorspannung						

GERÄTEDATEN DER 400 V-GERÄTE

3.4.4 Ein- und Ausgangsströme/Überlast der 400 V-Geräte

Eingangsströme 400 V-Geräte								
Gerätegröße			09	10				
Eingangsbemessungsstrom @ UN = 400 V	Iin / A	3,6	6,0	8,0				
Eingangsbemessungsstrom UL @ UN _UL = 480 V	Iin_UL / A	2,9	4,7	6,7				
Eingangsbemessungsstrom DC @ UN_dc = 565 V	lin_dc / A	1,9	3,7	5,2				
Eingangsbemessungsstrom DC UL @ UN_UL_dc = 680 V 1)	lin_dc_UL / A	3,6	5,8	8,0				
Tabelle 15: Eingangsströme der 400 V-Geräte								

¹⁾ Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uκ.

Ausgangsströme 400 V-Geräte								
Gerätegröße			07	09	10			
Ausgangsbemessungsstrom @ UN = 400 V		In / A	2,6	4,1	5,8			
Ausgangsbemessungsstrom UL @ UN_UL = 480 V		IN_UL/A	2,1	3,4	4,8			
Überlaststrom (60s)	1)	160s / %	200					
Überlaststrom (3s)	1)	13s / %	250					
Abschaltstrom	1)	loc/%	300					
Tabelle 16: Ausgangsströme der 400 V-Geräte								

¹⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

3.5 Gerätedaten der 230 V-Geräte

3.5.1 Übersicht der 230 V-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motornennstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			07	09		
Gehäuse			2	2		
Ausgangsbemessungsscheinleistung		Sout / kVA	1,6	2,8		
Max. Motorbemessungsleistung		P _{mot} / kW	0,75	1,5		
Ausgangsbemessungsstrom		In / A	4	7		
Ausgangsspannung		Uout / V	0 <i>Uin</i>	_dc/√2		
Ausgangsphasen			3	3		
Ausgangsfrequenz	1)	fout / Hz	05	599		
Ausgangsbemessungsüberlast (60s)	2)	160s / %	15	50		
Ausgangsbemessungsüberlast (3s)	2)	/3s / %	200			
Abschaltstrom	2)	loc / %	240			
Bemessungsschaltfrequenz	Bemessungsschaltfrequenz			8		
Eingangsbemessungsstrom		Iin / A	8	14		
Eingangsbemessungsspannung		Un / V	230			
Eingangsspannungsbereich		Uin / V	184	.265		
Eingangsspannungsbereich DC-Versorgung		Uin_dc / V	260	.375		
Netzphasen			1			
Netzfrequenz		f _N / Hz	50/	60		
Maximalstrom 0 Hz/50 Hz bei fs=4 kHz		lout_max / %	175/240	157/240		
Maximalstrom 0 Hz/50 Hz bei fs=8 kHz	strom 0Hz/50Hz bei fs=8kHz		150/240	114/240		
Maximalstrom 0 Hz/50 Hz bei fs=16 kHz		lout_max / %	100/240	85/240		
Isolationswiderstand @ <i>U_dc</i> = 500 V		Riso / MΩ	> 5			
Zwischenkreiskapazität		C / µF	1170 1410			
Tabelle 17: Übersicht Gerätedaten der 230 V-C	Geräte					

Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

3.5.2 Bemessungsbetrieb

Sämtliche Bemessungswerte beziehen sich auf einen Bemessungsbetrieb bei $U_N = 230 \text{ V}$, Bemessungsschaltfrequenz f_{SN} und einer Ausgangsfrequenz $f_{out} = 50 \text{ Hz}$.

²⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

GERÄTEDATEN DER 230 V-GERÄTE

3.5.3 Spannungs- und Frequenzangaben der 230 V-Geräte

Eingangsspannungen und -frequenzen						
Eingangsbemessungsspannung	Un/V	120230				
Eingangsbemessungsspannung UL	U _{N_UL} / V	120230				
Eingangsspannungsbereich	Uin / V	184265				
Netzphasen		1				
Netzfrequenz	f _N / Hz	50/60				
Netzfrequenztoleranz	±f₁√ Hz	±2				
Tabelle 18: Eingangsspannungen und -frequenzen der 230 V-Geräte						

Eingangsspannungen für DC-Betrieb					
Eingangsbemessungsspannung DC	U _{N_dc} / V	325			
Eingangsspannungsbereich DC-Versorgung	Uin_dc / V	260375			
Tabelle 19: Eingangsspannungen für DC-Betrieb der 230 V-Geräte					

Ausgangsspannungen und -frequenzen							
Ausgangsspannung bei AC-Versorgung	1)	Uout / V	3x0Uin				
Ausgangsspannung bei DC-Versorgung	1)	Uout_dc / V	3 x 0 <i>Uin_dc </i> √2				
Ausgangsfrequenz	2)	fout / Hz	0599				
Tabelle 20: Ausgangsspannungen und -frequenzen der 230 V-Geräte							

Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren (=> "3.4.3.1 Beispiel zur Berechnung der Motorspannung").

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

DC-Schaltpegel			
DC-Abschaltpegel "Fehler! Unterspannung"		UUP_dc / V	260
DC-Schaltpegel Bremstransistor	1)	U _{B_dc} / V	380
DC-Abschaltpegel "Fehler! Überspannung"		UOP_dc / V	420
Tabelle 21: DC-Schaltpegel der 230 V-Geräte		·	

Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

3.5.4 Ein- und Ausgangsströme/Überlast der 230 V-Geräte

Eingangsströme 230 V-Geräte				
Gerätegröße			07	09
Eingangsbemessungsstrom @ UN = 230 V		Iin / A	8	14
Eingangsbemessungsstrom UL @ UN_UL = 230 V		Iin_UL / A	8	14
Eingangsbemessungsstrom DC @ UN_dc = 325 V	1)	lin_dc / A	3,3	6,2
Eingangsbemessungsstrom DC UL @ UN_UL_dc = 325 V	1)	lin_dc_UL / A	3,3	6,2
Tabelle 22: Eingangsströme der 230 V-Geräte				

¹⁾ Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uκ.

Ausgangsströme 230 V-Geräte				
Gerätegröße			07	09
Ausgangsbemessungsstrom @ UN = 230 V		In / A	4	7
Ausgangsbemessungsstrom UL @ UN_UL = 230 V		IN_UL / A	_UL / A 4	
Ausgangsbemessungsüberlast (60s)	1)	160s / %	15	50
Ausgangsbemessungsüberlast (3s)	1)	/3s / %	20	00
Abschaltstrom	1)	loc / %	240	
Tabelle 23: Ausgangsströme der 230 V-Geräte				

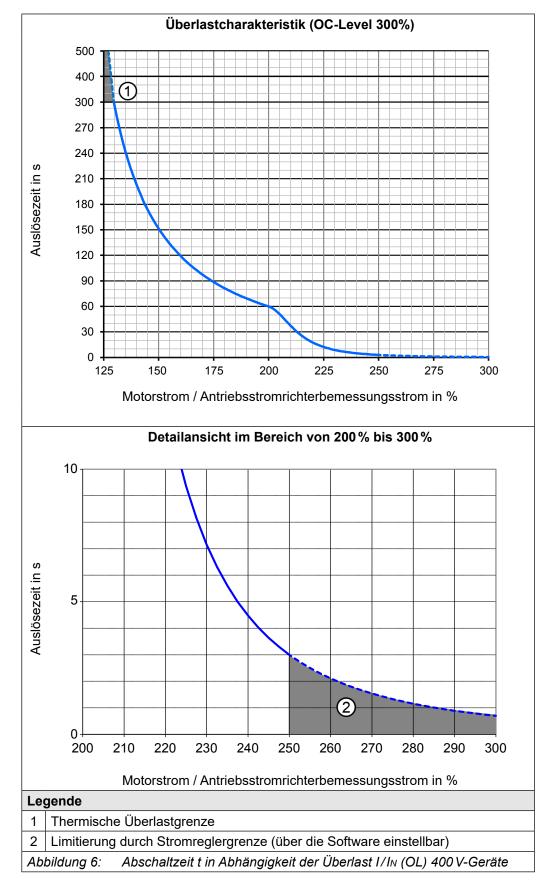
¹⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

3.6 Allgemeine Daten

3.6.1 Überlastcharakteristik (OL)

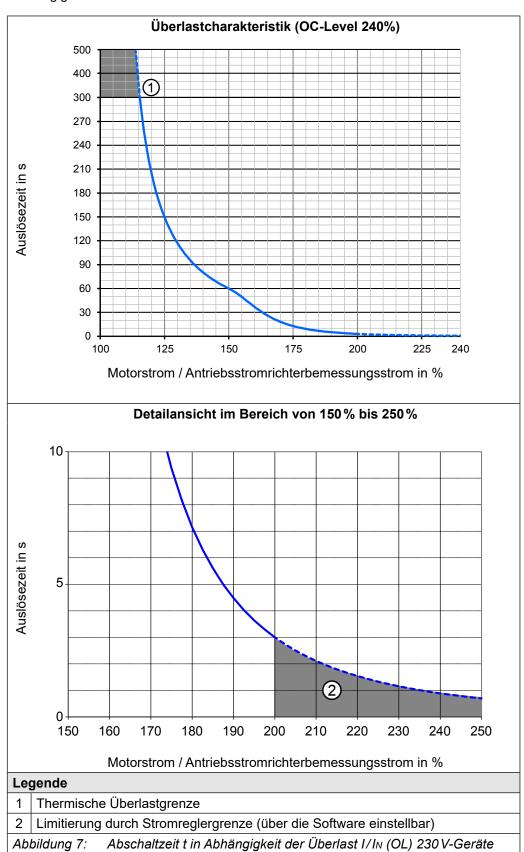
Alle COMBIVERT S6 können bei Bemessungsschaltfrequenz zeitlich begrenzt auch in Überlast betrieben werden. Weitere Angaben dazu finden sich in den Diagrammen "Abbildung 6: Abschaltzeit t in Abhängigkeit der Überlast I/IN (OL) 400 V-Geräte" und "Abbildung 7: Abschaltzeit t in Abhängigkeit der Überlast I/IN (OL) 230 V-Geräte".

Einschränkungen:


- Die thermische Auslegung der Kühlkörper erfolgt auf den Bemessungsstrom und die maximal zulässige Umgebungstemperatur. Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vorher der Maximalstrom (I0Hz/I6Hz) überschritten und der Fehler OL2 ausgelöst werden (siehe auch Kapitel "Maximalstrom (OL2)").

Bei Überschreiten einer Auslastung von 105% startet ein Überlastintegrator. Bei Unterschreiten wird rückwärts gezählt. Erreicht der Integrator die Überlastkennlinie, wird "Fehler! Überlastung (Ixt)" ausgelöst.

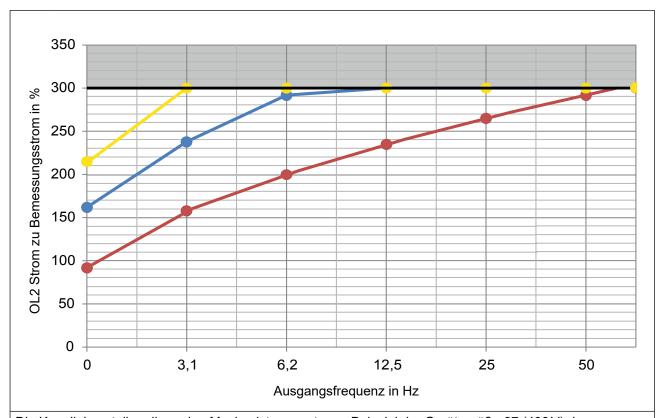
Nach Ablauf einer Abkühlzeit wird die Meldung "Überlast beseitigt" angezeigt. Der Fehler kann nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.



3.6.1.1 Abschaltzeit in Abhängigkeit der Überlast bei 400 V-Geräten

ALLGEMEINE DATEN

3.6.1.2 Abschaltzeit in Abhängigkeit der Überlast bei 230 V-Geräten



3.6.1.3 Maximalstrom (OL2)

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme der Fehler (OL2) ausgelöst werden soll oder die Schaltfrequenz automatisch verringert wird (Derating).

Die folgenden Tabellen geben für 6 Ausgangsfrequenzwerte den zulässigen Maximalstrom an. Dazwischen wird linear interpoliert. Es wird beispielhaft die Gerätegröße 07 dargestellt.

Überlastcharakteristik im unteren Drehzahlbereich (OL2)

Die Kennlinien stellen die realen Maximalstromwerte am Beispiel der Gerätegröße 07 (400 V) dar.

Leg	en	de
	~	u

Abschaltstrom Ioc

Schaltfrequenz 4kHz

Schaltfrequenz 8 kHz

Schaltfrequenz 16 kHz

Steht nicht für die Modulation zur Verfügung. Bei 300 % Überlast wird der Fehler OC ausgelöst.

Abbildung 8: Überlastcharakteristik im unteren Drehzahlbereich (OL2)

Der frequenzabhängie Maximalstrom *lout_max* bezieht sich prozentual auf den Ausgangsbemessungsstrom *l*_N.

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

ALLGEMEINE DATEN

Frequenzabhängiger Maximalstrom 400 V-Geräte

Gerätegröße			07					
Bemessungsschaltfrequenz			8 kHz					
Ausgangsfrequenz		fout / Hz	0	3,1	6,2	12,5	25	50
Fue was a sale in a sale i		4 kHz	215	300	300	300	300	300
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	8 kHz	162	238	292	300	300	300
Basic Time Period = 62,5 µs (Parameter is22=0))) –	16kHz	92	158	200	235	265	292
Frequenzabhängiger Maximalstrom @ fs		7 kHz	175	254	300	300	300	300
Basic Time Period = 71,4 µs (Parameter is22=1)	lout_max / %	14 kHz	104	175	215	252	287	300
Frequenzabhängiger Maximalstrom @ fs	1 . 10/	6 kHz	188	269	300	300	300	300
Basic Time Period = 83,3 µs (Parameter is22=2)	lout_max / %	12 kHz	115	192	231	269	308	346
Frequenzabhängiger Maximalstrom @ fs	1 . 10/	5 kHz	202	285	300	300	300	300
Basic Time Period = 100 µs (Parameter is22=3)	lout_max / %	10 kHz	138	215	262	300	300	300
Tabelle 24: Frequenzabhängiger Maximalstron	n für Geräte	größe 07	400 V-	Geräte)			

Gerätegröße			09					
Bemessungsschaltfrequenz			8 kHz					
Ausgangsfrequenz		fout / Hz	0	3,1	6,2	12,5	25	50
Eraguanzahhängigar Mayimalatram @ fa		4 kHz	193	266	300	300	300	300
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 µs (Parameter is 22=0)	lout_max / %	8 kHz	132	198	234	256	283	300
Basic Time Feriou - 62,5 µs (Farameter 1822-0)		16 kHz	73	122	146	166	183	200
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	7 kHz	147	215	253	276	300	300
Basic Time Period = 71,4 µs (Parameter is22=1)	Iout_max i 7 o	14 kHz	85	138	159	180	201	216
Frequenzabhängiger Maximalstrom @ fs	1 , 10/	6 kHz 12 kHz	162	232	272	296	300	300
Basic Time Period = 83,3 µs (Parameter is22=2)	lout_max / %	12 kHz	98	154	171	195	220	232
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	177	249	291	300	300	300
Basic Time Period = 100 µs (Parameter is22=3)	iout_max i %	10 kHz	115	176	202	226	251	267
Tabelle 25: Frequenzabhängiger Maximalstrom für Gerätegröße 09 400 V-Geräte								

Gerätegröße					1	0		
Bemessungsschaltfrequenz			8 kHz					
Ausgangsfrequenz		fout / Hz	0	3,1	6,2	12,5	25	50
Eraguanzahhängigar Mayimalatram @ fa		4 kHz	155	250	284	300	300	300
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 µs (Parameter is 22=0)	lout_max / %	8kHz	103	172	207	233	255	276
Basic Time Feriou – 62,5 µs (Farameter 1822–0))	16 kHz	50	103	121	138	155	164
Frequenzabhängiger Maximalstrom @ fs	1 . 10/	7kHz	116	192	226	254	278	297
Basic Time Period = 71,4 µs (Parameter is22=1)	lout_max / %	14 kHz	64	116	138	155	177	185
Frequenzabhängiger Maximalstrom @ fs	1 . 10/	6kHz	129	211	246	276	300	300
Basic Time Period = 83,3 µs (Parameter is22=2)	lout_max / %	12 kHz	78	129	155	172	198	207
Frequenzabhängiger Maximalstrom @ fs	1 . 10/	5kHz	142	231	265	297	300	300
Basic Time Period = 100 µs (Parameter is22=3)	lout_max / %	10 kHz	91	151	181	203	227	241
Tabelle 26: Frequenzabhängiger Maximalstrom für Gerätegröße 10 400 V-Geräte								

Frequenzabhängiger Maximalstrom 230 V-Geräte

Gerätegröße			07					
Bemessungsschaltfrequenz			8 kHz					
Ausgangsfrequenz		fout / Hz	0	3,1	6,2	12,5	25	50
Eraguanzahhängigar Mavimalatram @ fa		4 kHz	175	240	240	240	240	240
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	8 kHz	150	200	240	240	240	240
Basic Time Period = 62,5 µs (Parameter is22=0)		16kHz	100	150	200	240	240	240
Frequenzabhängiger Maximalstrom @ fs	1 , 10/	7 kHz	156	213	240	240	240	240
Basic Time Period = 71,4 µs (Parameter is22=1)	lout_max / %	14 kHz	113	163	213	240	240	240
Frequenzabhängiger Maximalstrom @ fs	1 . 10/	6kHz	163	225	240	240	240	240
Basic Time Period = 83,3 µs (Parameter is22=2)	lout_max / %	12kHz	125	175	225	240	240	240
Frequenzabhängiger Maximalstrom @ fs	1 , 10/	5kHz	169	238	240	240	240	240
Basic Time Period = 100 µs (Parameter is22=3)	lout_max / %	10 kHz	138	188	238	240	240	240
Tabelle 27: Frequenzabhängiger Maximalstrom für Gerätegröße 07 230 V-Geräte								

Gerätegröße		09						
Bemessungsschaltfrequenz			8 kHz					
Ausgangsfrequenz fout / Hz		0	3,1	6,2	12,5	25	50	
Eraguanzahhängigar Mavimalatram @ fa		4 kHz	157	214	240	240	240	240
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 \mu s (Parameter is 22=0)	lout_max / %	8kHz	114	171	229	240	240	240
basic Time Period – 62,5 µs (Parameter 1522–0)		16 kHz	86	143	200	229	240	240
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	7 kHz	125	182	234	240	240	240
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	93	150	207	232	240	240
Frequenzabhängiger Maximalstrom @ fs	1 . 10/	6 kHz	136	193	239	240	240	240
Basic Time Period = 83,3 µs (Parameter is 22=2)		12 kHz	100	157	214	236	240	240
Frequenzabhängiger Maximalstrom @ fs	1 . 10/	5 kHz	146	204	240	240	240	240
Basic Time Period = 100 µs (Parameter is 22=3)		10 kHz	107	164	221	240	240	240
Tabelle 28: Frequenzabhängiger Maximalstrom	n für Geräte	größe 09	230 V-	Geräte)			

3.6.2 Schaltfrequenz und Temperatur

Die Antriebsstromrichterkühlung ist so ausgelegt, dass bei Bemessungsbedingungen die Kühlkörperübertemperaturschwelle nicht überschritten wird. Eine Schaltfrequenz größer der Bemessungsschaltfrequenz erzeugt auch höhere Verluste und damit eine höhere Kühlkörpererwärmung.

Erreicht die Kühlkörpertemperatur eine kritische Schwelle (*Tdr*) kann die Schaltfrequenz automatisch schrittweise reduziert werden, um zu verhindern, dass der Antriebsstromrichter wegen Übertemperatur des Kühlkörpers abschaltet. Unterschreitet die Kühlkörpertemperatur *Tur* wird die Schaltfrequenz wieder auf den Sollwert angehoben. Bei der Temperatur *Tem* wird die Schaltfrequenz sofort auf Bemessungsschaltfrequenz reduziert. Damit diese Funktion greift, muss "Derating" aktiviert sein.

Spannungsklasse				400 V		23	0 V
Gerätegröße			07	09	10	07	09
Netzphasen				3		,	1
Bemessungsschaltfrequenz	1)	<i>f</i> s∧/kHz		8		3	3
Max. Schaltfrequenz	1)	fs_max / kHz		16		1	6
Max. Kühlkörpertemperatur		T _H s/°C		90		8	0
Temperatur zur Schaltfrequenzreduzierung	2)	Tdr / °C		80		7	0
Temperatur zur Schaltfrequenzerhöhung	2)	Tur / °C		70		6	0
Temperatur zur Umschaltung auf Nennschaltfrequenz	2)	Tem / °C		85		7	5
Tabelle 29: Schaltfrequenz und Temperatur							

Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

Bei Erreichen der Temperatur Tdr wird die Schaltfrequenz schrittweise reduziert. Bei Abkühlung bis auf Temperatur Tur wird die Schaltfrequenz wieder angehoben.
Ist ein Derating im Einzelfall nicht erwünscht, kann die Funktion per Software deaktiviert werden.

3.6.3 Absicherung der Antriebsstromrichter

3.6.3.1 400 V-Geräte, 3-phasig

Bei 400V-Betrieb, 3-phasig					
	Sicherung in A		Alternativ Motorschutzschalter		
Gerätegröße	<i>U</i> _N = 400 V gG (IEC)	U _N = 480 V Class "CC" or "J" (UL)	Eaton PKZM0 10-E (UL)		
	SCCR 30 kA	SCCR 30 kA	SCCR 30 kA		
07	6	6			
09	10	10	480Y/277V, 7.5HP		
10	10	10			
Bei 230V-Betrieb, 3	B-phasig				
	Sighor	rung in A	Alternativ		
	Sicilei	ung m A	Motorschutzschalter		
Gerätegröße	<i>U</i> _N = 230 V gG (IEC)	U _N = 200-230 V class "CC" (UL)	Eaton PKZM0 10-E (UL)		
	SCCR 30 kA	SCCR 30 kA	SCCR 30 kA		
07	6	6			
09	10	10	200-230 V, 3 HP		
10	10	10			
Tabelle 30: Absicherung der Antriebsstromrichter 400 V-Geräte, 3-phasig					

3.6.3.2 230 V-Geräte, 1-phasig

	Sicheru	ing in A	Alternativ Motorschutzschalter		
Gerätegröße	<i>U</i> พ = 230 V gG (IEC)	<i>U</i> _N = 120-230 V class "CC" ¹⁾	Eaton PKZM0 20-E ²⁾		
	SCCR 30 kA	SCCR 30 kA	SCCR 5kA		
07	15	15	115 V / 1ph, 1.5 hp		
09	20	20	230 V / 1ph, 3 hp		
Tabelle 31: Absicherung der Antriebsstromrichter 230 V-Geräte, 1-phasig					

¹⁾ Für Netze mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 5kA eff. sind zusätzlich Sicherungen der Klasse J zulässig.

²⁾ Bis 5kA SCCR sind auch Sicherungen Class "J" möglich.

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 30 kA eff. geeignet.

ALLGEMEINE DATEN

3.6.4 DC-Zwischenkreis / Bremstransistorfunktion

3.6.4.1 DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte

Gerätegröße		07	09	10	
Zwischenkreis Bemessungsspannung @ UN = 400 V	UN_dc/V		565		
Zwischenkreis Bemessungsspannung @ UN = 480 V	U _{N_dc_UL} /V		672		
Zwischenkreis Arbeitsspannungsbereich	Uin_dc / V	26	30750	±0	
DC-Abschaltpegel "Fehler! Unterspannung"	<i>U</i> up/V		240		
DC-Abschaltpegel "Fehler! Überspannung"	<i>U</i> op/V	840			
Bemessungsstrom @ Uin_dc = 565 V	lin_dc / A	1,9	3,7	5,2	
Bemessungsstrom UL @ Uin_dc = 680 V	lin_dc_UL / A	1,6	3,1	4,3	
Bemessungsstrom @ Uout_dc = 565 V	lout_max_dc / A	1,9	3,7	5,2	
Bemessungsstrom UL @ Uout_dc = 680 V	lout_max_dc_UL / A	1,6	3,1	4,3	
DC-Schaltpegel Bremstransistor	1) <i>U</i> B/V		780		
Max. Bremsstrom	IB_max / A	5,5	8	11	
Min. Bremswiderstandswert	RB_min / Ω	160	110	82	
Schutzfunktion für Bremstransistor					
Tabelle 32: DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte					

¹⁾ Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

3.6.4.2 DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte

Gerätegröße		07	09		
Zwischenkreis Bemessungsspannung @ UN = 230 V	U _{N_dc} / V	32	25		
Zwischenkreis Bemessungsspannung @ Un_uL = 230 V	U _{N_dc_UL} /V	32	25		
Zwischenkreis Arbeitsspannungsbereich	Uin_dc / V	2603	375 ±0		
DC-Abschaltpegel "Fehler! Unterspannung"	Uup/ V	26	60		
DC-Abschaltpegel "Fehler! Überspannung"	Uop/V	42	20		
Bemessungsstrom @ Uin_dc = 325 V	lin_dc / A	3,3	6,2		
Bemessungsstrom UL @ Uin_dc = 325 V	lin_dc_UL / A	3,3	6,2		
Bemessungsstrom @ Uout_dc = 325 V	lout_max_dc / A	3,3	6,2		
Bemessungsstrom UL @ Uout_dc = 325 V	lout_dc_max_UL / A	3,3	6,2		
DC-Schaltpegel Bremstransistor	1) <i>U</i> B/V	38	30		
Max. Bremsstrom	IB_max / A	7,5	12,7		
Min. Bremswiderstandswert	RB_min / Ω	56	33		
Schutzfunktion für Bremstransistor 2) —					
Tabelle 33: DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte					

Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

²⁾ Keine Schutzfunktion, => "4.2.7.2 Verwendung eigensicherer Bremswiderstände".

²⁾ Keine Schutzfunktion, => "4.2.7.2 Verwendung eigensicherer Bremswiderstände".



ACHTUNG

Zerstörung des Antriebsstromrichters!

Unterschreiten des minimalen Bremswiderstandswerts

▶ Der minimale Bremswiderstandswert darf nicht unterschritten werden!

Aktivierung der Bremstransistorfunktion

Um den Bremstransistor verwenden zu können, muss die Funktion mit dem Parameter "is30 braking transistor function" aktiviert werden.

Weitere Informationen im Downloadbereich von www.keb.de unter dem Suchbegriff "S6 Programmierhandbuch".

3.6.5 Verlustleistung 400 V-Geräte

Gerätegröße		07	09	10
Verlustleistung bei Bemessungsbetrieb	1) <i>P</i> D/W	50	57	80
Verlustleistung bei DC-Versorgung 1) PD_dc / W		31	46	63
Tabelle 34: Verlustleistung 400 V-Geräte				

¹⁾ Bemessungsbetrieb entspricht Un=400 V; fsn; fout=50 Hz (typischer Wert).

3.6.6 Verlustleistung 230 V-Geräte

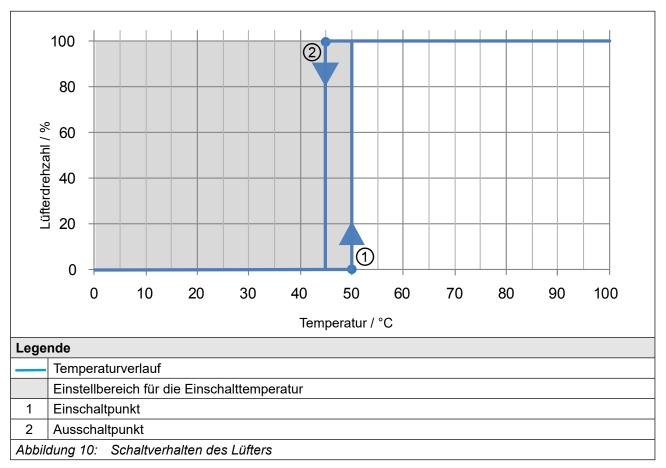
Gerätegröße		07	09
Verlustleistung bei Bemessungsbetrieb	1) <i>P</i> _D /W	60	95
Verlustleistung bei DC-Versorgung	70	50	
Tabelle 35: Verlustleistung 230 V-Geräte			

Bemessungsbetrieb entspricht UN=400 V; fsN; fout=50 Hz (typischer Wert).

ALLGEMEINE DATEN

3.6.7 Lüfter

Gerätegröße		07	10		
Kühlkörperlüfter	Anzahl	1			
Kullikorpellultei	Drehzahlvariabel	_			

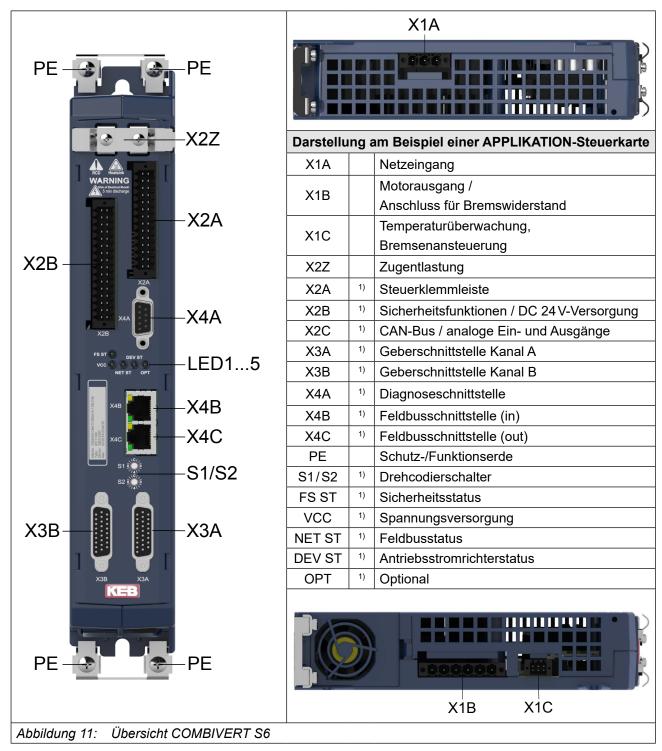

ACHTUNG

Zerstörung des Lüfters!

► Es dürfen keine Fremdkörper in den Lüfter eindringen!

3.6.7.1 Schaltverhalten des Lüfters

Der Lüfter besitzt verschiedene Ein- und Ausschaltpunkte. Der Schaltpunkt für die Einschalttemperatur ① des Lüfters ist einstellbar. Der Schaltpunkt für die Ausschalttemperatur ② kann nicht verändert werden und liegt immer 5°C unter der Einschalttemperatur.


3.6.7.2 Schaltpunkte des Lüfters

Der Schaltpunkt für die Einschalttemperatur ist zwischen 0,1°C und 50°C einstellbar. Der Standardwert beträgt 50°C.

4 Installation und Anschluss

4.1 Übersicht des COMBIVERT S6

¹⁾ Wird in der Installationsanleitung der Steuerkarte beschrieben.

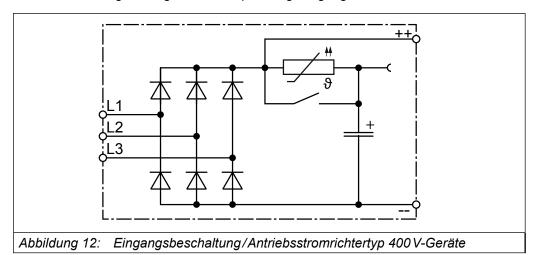
Gebrauchsanleitung COMBIVERT S6 Steuerkarte APPLIKATION

Gebrauchsanleitung COMBIVERT S6 Steuerkarte KOMPAKT

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_s6-cu-k-inst-20087885_de.pdf

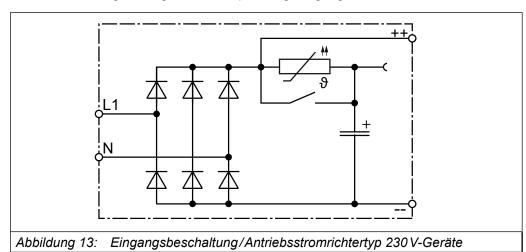
Gebrauchsanleitung COMBIVERT S6 Steuerkarte PRO

 $www.keb.de/fileadmin/media/Manuals/dr/ma_dr_s6-cu-p-inst-20156056_de.pdf$



4.2 Anschluss des Leistungsteils

4.2.1 Anschluss der Spannungsversorgung


4.2.1.1 400 V-Geräte

Der COMBIVERT S6 kann sowohl vom Netz, als auch über die DC-Klemmen gespeist werden. Die Einschaltstrombegrenzung ist vor dem Zwischenkreis angeordnet. Bei Verwendung als DC-Ausgang müssen parallelgeschaltete Antriebsstromrichter eine eigene Einschaltstrombegrenzung am Gleichspannungseingang besitzen.

4.2.1.2 230 V-Geräte

Der COMBIVERT S6 kann sowohl vom Netz, als auch über die DC-Klemmen gespeist werden. Die Einschaltstrombegrenzung ist vor dem Zwischenkreis angeordnet. Bei Verwendung als DC-Ausgang müssen parallelgeschaltete Antriebsstromrichter eine eigene Einschaltstrombegrenzung am Gleichspannungseingang besitzen.

ACHTUNG

Minimale Wartezeit zwischen zwei Einschaltvorgängen 5 Minuten!

Zyklisches Aus- und Einschalten des Gerätes führt zur temporären Hochohmigkeit des Kaltleiters (PTC) im Eingang. Nach Abkühlung ist eine erneute Inbetriebnahme ohne Einschränkung möglich.

ACHTUNG

Zerstörung des Antriebsstromrichters!

Niemals Anschlüsse Netzeingang und Motorausgang vertauschen!

4.2.1.3 Netzklemmleiste X1A

100 V Coldic 200 V Coldic					
400 V-Geräte					
Name	Funktion	Querschnitt			
L1	Netzanschluss	0.5. 2.5 mm²			
L2		0,52,5 mm² AWG 20-14			
L3	3-phasig	AVVG 20-14			
230 V-Geräte					
Name	Funktion	Querschnitt			
L1	Netzanschluss	0.5. 2.5 mm²			
L2	Netzanschluss	0,52,5 mm ²			

1-phasig

Abbildung 14: Netzklemmleiste X1A

L3

ACHTUNG

Anschlussleitungen beachten!

In UL-relevanten Applikationen sind für Geräte der Größe 09 (1ph/230V) an den Klemmen X1A und X1B nur mehrdrähtige Leitungen (Litzen) zulässig.

AWG 20-14

4.2.2 Ableitströme

Berechnete, maximale Ableitströme in Abhängigkeit von Spannung und Frequenz.

Netzphasen	Eingangsbemessungsspannung / V	Frequenz / Hz	Ableitstrom / mA		
	230	50	3,6		
	230	60	4,3		
1-phasig	Maximale Eingangspannung / V	Frequenz / Hz	Ableitstrom / mA		
	265	50	4,1		
	265	60	4,9		
Tabelle 36: Ableitströme 1-phasia					

Netzphasen	Eingangsbemessungsspannung / V	Frequenz / Hz	Ableitstrom / mA
2 phooig	230	50 / 60	-5
3-phasig	400	50 / 60	<5
Tabelle 37: Ableitströ	öme 3-phasig		

Bei den angegebenen Ableitströmen handelt es sich um errechnete Werte nach *DIN EN 60939-1*. Die realen Ableitströme können je nach Netzbedingungen von den errechneten Werten abweichen.

4.2.3 Schutz- und Funktionserde

Schutz- und Funktionserde dürfen nicht an der selben Klemme angeschlossen werden.

4.2.3.1 Schutzerdung

Die Schutzerde (PE) dient der elektrischen Sicherheit insbesondere dem Personenschutz im Fehlerfall.

Elektrischer Schlag durch Falschdimensionierung!

► Erdungsquerschnitt ist entsprechend *DIN IEC 60364-5-54* zu wählen!

Name	Funktion	Klemmenanschluss	Anzugsdrehmoment
	Anschluss für Schutzerde	Schraube M4 für Kabelschuhe	1,3 Nm
PE, 🖶			11 lb inch
Abbildung 15: Anschluss für Schutzerde			

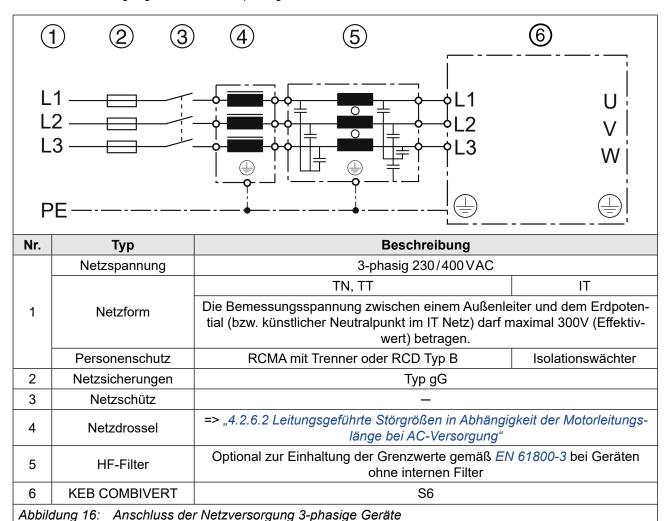
ANSCHLUSS DES LEISTUNGSTEILS

4.2.3.2 Funktionserdung

Eine Funktionserdung kann zusätzlich notwendig sein, wenn aus EMV-Gründen weitere Potentialausgleiche zwischen Geräten oder Teilen der Anlage zu schaffen sind.

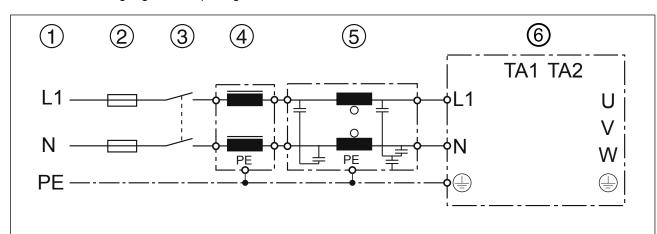
Wird der Antriebsstromrichter EMV-technisch verdrahtet, ist eine zusätzliche Funktionserde (FE) nicht erforderlich.

Die Funktionserde darf nicht grün/gelb verdrahtet werden!


Gebrauchsanleitung EMV- und Sicherheitshinweise. www.keb.de/fileadmin/media/Manuals/emv/0000ndb0000.pdf

4.2.4 AC-Anschluss

4.2.4.1 AC-Versorgung 230 V / 400 V 3-phasig



Bei Antriebsstellern mit Spannungszwischenkreis hängt die Lebensdauer von der DC-Spannung, der Umgebungstemperatur sowie von der Strombelastung der Elektrolytkondensatoren im Zwischenkreis ab. Durch den Einsatz von Netzdrosseln kann die Lebensdauer der Kondensatoren, speziell bei Dauerbelastung (S1-Betrieb) des Antriebes, bzw. beim Anschluss an "harte" Netze, wesentlich erhöht werden. Der Begriff "hartes" Netz sagt aus, dass die Knotenpunktleistung (*Snet*) des Netzes im Vergleich zur Ausgangsbemessungsleistung des Antriebsstromrichters (*Sout*) sehr groß ist (>>200).

$$k = \frac{S_{net}}{S_{out}} >> 200$$
 z.B. $k = \frac{2 \text{ MVA (Versorgungstrafo)}}{4 \text{ kVA (10S6)}} = 500$ —> Drossel notwendig

ANSCHLUSS DES LEISTUNGSTEILS

4.2.4.2 AC-Versorgung 230 V 1-phasig

Nr.	Тур	Beschreibung				
	Netzspannung	1-phasig 230 VAC				
		TN, TT	IT			
1	Die Bemessungsspannung zwischen einem Außenleiter und dem Erdpotential (bzw. künstlicher Neutralpunkt im IT Netz) darf maximal 300V (Effekt wert) betragen.					
	Personenschutz	RCMA mit Trenner oder RCD Typ B	Isolationswächter			
2	Netzsicherungen	Typ gG				
3	Netzschütz					
4	4 Netzdrossel => "4.2.6.2 Leitungsgeführte Störgrößen in Abhängigkeit der Motorleitungslänge bei AC-Versorgung"					
5	HF-Filter	Optional zur Einhaltung der Grenzwerte gemäß <i>EN 61800-3</i> bei Geräten ohne internen Filter				
6	KEB COMBIVERT	S6				
Δhhila	Abbildung 17: Anschluss der Netzversorgung 1-phasige Geräte					

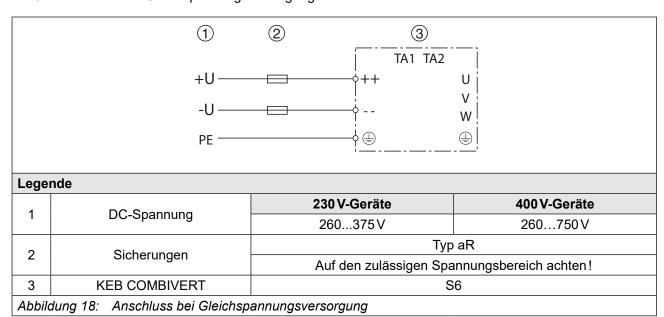
Abbildung 17: Anschluss der Netzversorgung 1-phasige Geräte

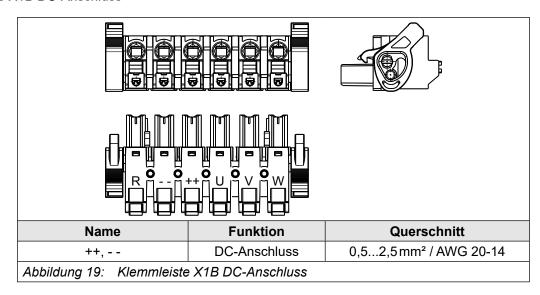
Bei Antriebsstellern mit Spannungszwischenkreis hängt die Lebensdauer von der DC-Spannung, der Umgebungstemperatur sowie von der Strombelastung der Elektrolytkondensatoren im Zwischenkreis ab. Durch den Einsatz von Netzdrosseln kann die Lebensdauer der Kondensatoren, speziell bei Dauerbelastung (S1-Betrieb) des Antriebes, bzw. beim Anschluss an "harte" Netze, wesentlich erhöht werden. Der Begriff "hartes" Netz sagt aus, dass die Knotenpunktleistung (*Snet*) des Netzes im Vergleich zur Ausgangsbemessungsleistung des Antriebsstromrichters (*Sout*) sehr groß ist (>>200).

$$k = \frac{S_{net}}{S_{out}} >> 200$$
 z.B. $k = \frac{2 \text{ MVA (Versorgungstrafo)}}{2,8 \text{ kVA (09S6)}} = 714$ —> Drossel notwendig

4.2.4.3 Netzzuleitung

Der Leiterquerschnitt der Netzzuleitung wird von folgenden Faktoren bestimmt:


- Eingangsstrom des Antriebsstromrichters
- · Verwendeter Leitungstyp
- · Verlegeart und Umgebungstemperatur
- Den vor Ort gültigen Elektrovorschriften


Der Projektierer ist für die Auslegung verantwortlich!

4.2.5 DC-Anschluss

4.2.5.1 Anschluss bei Gleichspannungsversorgung

4.2.5.2 Klemmleiste X1B DC-Anschluss

4.2.6 Anschluss des Motors

4.2.6.1 Auswahl der Motorleitung

Bei kleinen Leistungen in Verbindung mit langen Motorleitungslängen spielt die richtige Verdrahtung, sowie die Motorleitung selbst eine wichtige Rolle. Ferritkerne und kapazitätsarme Leitungen (Phase/Phase < 65 pF/m, Phase / Schirm < 120 pF/m) am Ausgang haben folgende Auswirkungen:

- Längere Motorleitungslängen
- Geringerer Verschleiss der Motorlager durch Ableitströme
- Bessere EMV-Eigenschaften (Reduktion der Gleichtaktausgangsströme gegen Erde)

4.2.6.2 Leitungsgeführte Störgrößen in Abhängigkeit der Motorleitungslänge bei AC-Versorgung

Die maximale Motorleitungslänge ist abhängig von der Kapazität der Leitung sowie von der einzuhaltenden Störaussendung. Die folgenden Angaben gelten für den Betrieb unter Nennbedingungen.

		Max. Motorleitungslänge (geschirmt)		
		gemäß EN 61800-3		
		Kategorie C2		
Spannungsklasse	Gerätegröße	Motorleitung / m (kapazitätsarm)		
230 V	07	30		
1-phasig	09	30		
400 V	07			
3-phasig	09	50		
5-priasig	10			
Tabelle 38: Maximale Motorleitungslänge bei AC-Versorgung				

Durch den Einsatz von Motordrosseln oder -filtern kann sich die Leitungslänge erheblich verlängern. KEB empfiehlt den Einsatz ab einer Leitungslänge von 50 m. Ab 100 m wird der Einsatz erforderlich.

4.2.6.3 Motorleitungslänge bei Betrieb an Gleichspannung (DC)

Die maximale Motorleitungslänge bei DC-Betrieb ist im Wesentlichen abhängig von der Kapazität der Leitung. Bei DC-Betrieb ist der interne Filter nicht aktiv. Hier sind ggf. externe Maßnahmen zu ergreifen. Die folgenden Angaben gelten für den Betrieb unter Nennbedingungen.

Spannungsklasse	Gerätegröße	Motorleitung / m (kapazitätsarm)		
230 V	07	EC		
1-phasig	09	50		
400)/	07			
400 V	09	50		
3-phasig	10			
Tabelle 39: Maximale Motorleitungslänge bei DC-Betrieb				

4.2.6.4 Motorleitungslänge bei Parallelbetrieb von Motoren

Die resultierende Motorleitungslänge bei Parallelbetrieb von Motoren, bzw. bei Parallelverlegung durch Mehraderanschluss ergibt sich aus folgender Formel:

Resultierende Motorleitungslänge = ∑Einzelleitungslängen x √Anzahl der Motorleitungen

4.2.6.5 Motorleitungsquerschnitt

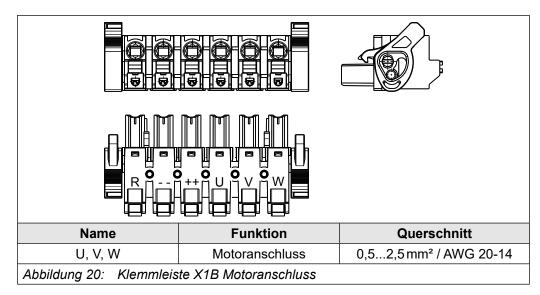
Der Motorleitungsquerschnitt ist abhängig

- von der Form des Ausgangsstroms (z.B. nicht sinusförmig).
- vom realen Effektivwert des Motorstroms.
- · von der Leitungslänge.
- · vom Typ der verwendeten Leitung.
- von Umgebungsbedingungen wie Bündelung und Temperatur.

4.2.6.6 Verschaltung des Motors

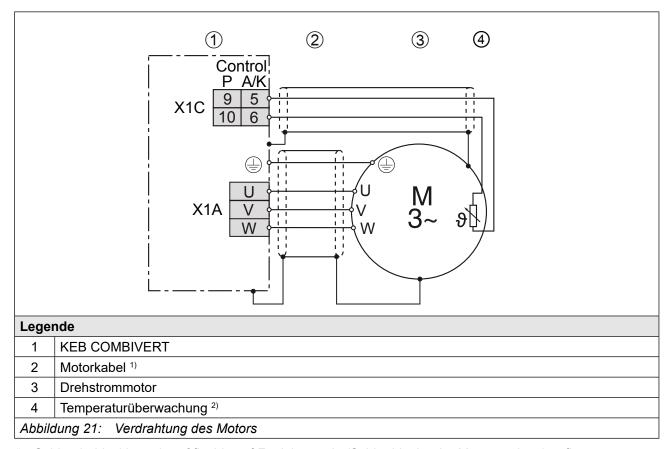
ACHTUNG

Motor vor Spannungsspitzen schützen!


Antriebsstromrichter schalten am Ausgang mit einem du/dt ≤5kV/µs. Insbesondere bei langen Motorleitungen (>15 m) können dadurch Spannungsspitzen am Motor auftreten, die dessen Isolationssystem gefährden. Zum Schutz des Motors kann eine Motordrossel, ein du/dt-Filter oder ein Sinusfilter eingesetzt werden.

ACHTUNG

Fehlerhaftes Verhalten des Motors!


Generell sind immer die Anschlusshinweise des Motorenherstellers gültig!

4.2.6.7 Klemmleiste X1B Motoranschluss

ANSCHLUSS DES LEISTUNGSTEILS

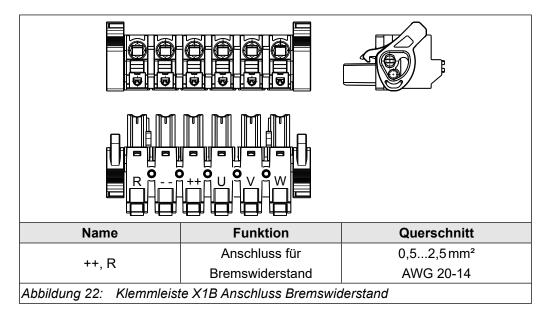
4.2.6.8 Verdrahtung des Motors

- ¹⁾ Schirm beidseitig und großflächig auf Funktionserde (Schirmblech oder Montageplatte) auflegen.
- Die Temperaturüberwachung ist optional erhältlich, => Gebrauchsanleitung "Steuerteil".

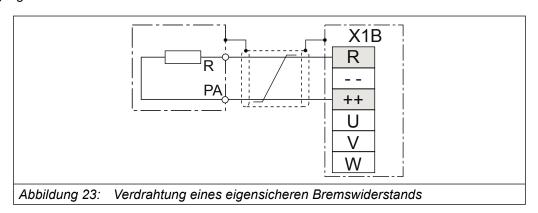
ACHTUNG

Anschluss der Temperaturerfassung

- Anschlusskabel der Temperaturerfassung vom Motor (auch geschirmt) nicht zusammen mit Steuerkabel verlegen!
- Innerhalb vom Motorkabel muss das Anschlusskabel der Temperaturerfassung mit einem zusätzlichem Schirm versehen sein (doppelte Abschirmung)!
- Der Eingang der Temperaturerfassung ist basisisoliert.


4.2.7 Anschluss eines Bremswiderstandes

A VORSICHT


Minimalen Bremswiderstandswert nicht unterschreiten!

Unterschreiten des minimalen Bremswiderstandswert zerstört den Bremstransistor des Antriebsstromrichters.

4.2.7.1 Klemmleiste X1B Anschluss Bremswiderstand

4.2.7.2 Verwendung eigensicherer Bremswiderstände

ACHTUNG

Nur eigensichere Bremswiderstände zulässig!

Für diesen Betrieb sind nur "eigensichere" Bremswiderstände zulässig, da sich diese im Fehlerfall wie eine Schmelzsicherung ohne Brandgefahr selbst unterbrechen.

Gebrauchsanleitung "Installation eigensichere Bremswiderstände"

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-braking-resistors-20106652_de.pdf

ANSCHLUSS DES LEISTUNGSTEILS

4.2.7.3 Verwendung nicht eigensicherer Bremswiderstände

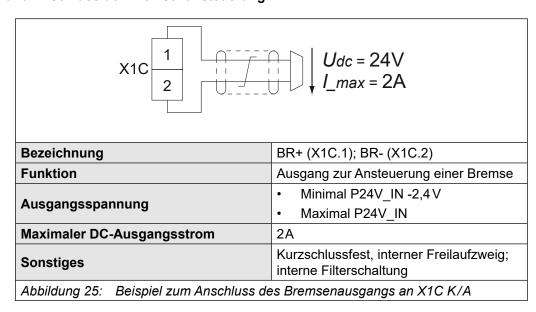
A WARNUNG

Verwendung nicht eigensicherer Bremswiderstände

Brand- oder Rauchentwicklung bei Überlastung oder Fehler!

- ▶ Nur Bremswiderstände mit Temperatursensor verwenden.
- ► Temperatursensor auswerten.
- ► Fehler am Antriebsstromrichter auslösen (z.B. externer Eingang).
- ► Eingangsspannung wegschalten (z.B. Eingangsschütz).
- ► Anschlussbeispiele für nicht eigensichere Bremswiderstände => Gebrauchsanleitung "Installation Bremswiderstände".

Gebrauchsanleitung "Installation Bremswiderstände" www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_de.pdf



4.3 Bremsenansteuerung und Temperaturerfassung für K- und A-Steuerung

X1C	PIN	Bezeichnung	Bemerkungen
	1	BR+	Bremsenansteuerung / Ausgang+
	2	BR-	Bremsenansteuerung / Ausgang-
	3	Reserviert	
2 4 6	4	Reserviert	
	5	TA1	Temperaturerfassung / Eingang+
	6	TA2	Temperaturerfassung / Eingang-
1 3 5			
Abbildung 24: Belegung der Klemmleiste X1C für K- und A-Steuerung			

4.3.1 Spezifikation und Anschluss der Bremsenansteuerung

4.3.2 Spezifikation und Anschluss der Temperaturerfassung

A GEFAHR

Nur Fühler mit Basisisolation zum Netzpotenzial verwenden!

A

Lebensgefahr durch Stromschlag!

- ▶ Die Eingänge der Temperaturerfassung besitzen "Basisisolation" zur SELV Spannung der Steuerung.
- ► Als Auslegung ist eine Systemspannung (Phase PE) von 300 V gewählt.

ACHTUNG

Störungen durch falsche Kabel oder Verlegung!

Fehlfunktionen der Steuerung durch kapazitive oder induktive Einkopplung.

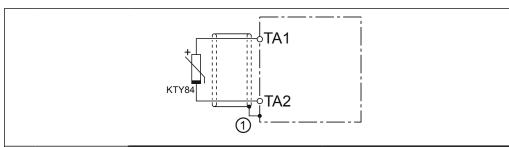
- ► Leitungen vom Motortemperatursensor (auch geschirmt) nicht zusammen mit Steuerkabel verlegen!
- ► Leitungen vom Motortemperatursensor innerhalb vom Motorkabel nur mit doppelter Abschirmung zulässig!

Im KEB COMBIVERT ist eine umschaltbare Auswertung implementiert. Die gewünschte Betriebsart ist per Software (dr33) einstellbar.

Betriebsart (dr33)		Widerstand	Temperatur/Status		
		0,49kΩ	0°C		
0	KTY84/130	1kΩ	100°C		
		1,72 kΩ	200°C		
	DT0 "0	< 0,75 kΩ	TA1-TA2 geschlossen		
1	PTC gemäß EN 60947-8	7501500 kΩ	Rückstellwiderstand		
'	(standard)	1,654 kΩ	Ansprechwiderstand		
	(Staridard)	> 4 kΩ	TA1-TA2 offen		
2	Über Geber	digital über den Geberkanal			
	KTY83/110	0,82 kΩ	0°C		
3		1,67 kΩ	100°C		
		2,53 kΩ	175°C		
		1kΩ	0°C		
4	PT1000	1,38 kΩ	100°C		
		1,75 kΩ	200°C		
	Übenseehung	< 0,04 kΩ	Kurzschluss		
_	Überwachung	> 79,5 kΩ	Keine Verbindung (Fühlerbruch)		
Tabelle 40: Spezifikation des Temperatureingangs für K- und A-Steuerung					

4.3.3 Betrieb ohne Temperaturerfassung

Verwendung des COMBIVERT ohne Auswertung des Temperatureingangs:

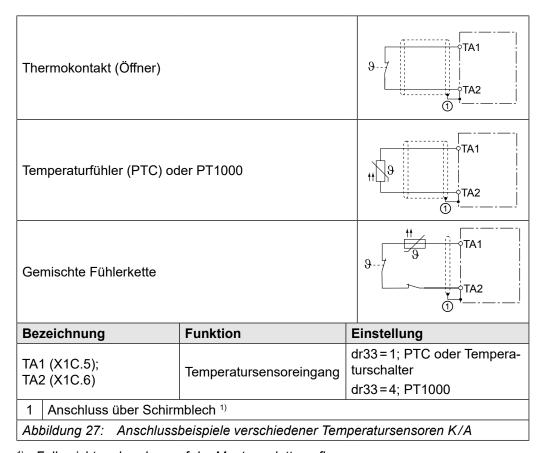

- Auswertung abschalten (pn33=7) oder
- Brücke zwischen Klemme X1C.5 und X1C.6 installieren (dr33 = 1)

4.3.4 Anschluss eines KTY-Sensors

ACHTUNG

Kein Schutz der Motorwicklung bei falschem Anschluss.

- ► KTY-Sensoren in Durchlassrichtung betreiben. Nichtbeachtung führt zu Fehlmessungen im oberen Temperaturbereich.
- ▶ KTY-Sensoren nicht mit anderen Erfassungen kombinieren.



Bezeichnung		Funktion	Einstellung	
TA1 (X1C.5);		Temperatursensoreingang	dr33=0; KTY84/130	
TA2 (X1C.6)			dr33=3; KTY83/110	
1 Anschluss über Schirmblech 1)				
Abbildung 26: Anschluss eines KTY-Sensors für K- und A-Steuerung				

¹⁾ Falls nicht vorhanden, auf der Montageplatte auflegen.

BREMSENANSTEUERUNG UND TEMPERATURERFASSUNG FÜR K- UND A-STEUERUNG

4.3.5 Anschluss von PTC, Temperaturschalter oder PT1000

¹⁾ Falls nicht vorhanden, auf der Montageplatte auflegen.

4.4 Bremsenansteuerung und Temperaturerfassung für P-Steuerung

X1C	PIN	Bezeichnung	Bemerkungen
	1	BR+	Bremsenansteuerung / Ausgang
	2	BR-	Bremsenansteuerung / Ausgang
	3	0V	zur Versorgung der Rückmeldee-
2 4 6 8 10	4	24Vout	ingänge P24Vin - 0,5 V / max. 1A
			(BR+ und 24Vout in Summe 2A)
1 3 5 7 9	5	DIBR1	Rückmeldeeingang für Bremsenansteuerung
	6	DIBR2	Rückmeldeeingang für Bremsenansteuerung
	7/8	reserviert	
	9	TA1	Temperaturerfassung / Eingang+
	10	TA2	Temperaturerfassung / Eingang-
Abbildung 28: Belegung der Klemmleiste X1C für P-Steuerung			

4.4.1 Spezifikation und Anschluss der Bremsen-/Relaisansteuerung

Features der Ansteuerung

- eine Bremse/Relais sicher ansteuern
- zwei einzelne Bremsen/Relais gemeinsam ansteuern; es muss zweimal die gleiche Bremse/ das gleiche Relais sein.
- Bremsenrückmeldung intern ohne zusätzliche Verkabelung oder extern über zwei digitale Eingänge der Bremse.
- Leistungsreduzierung durch pulsweitenmodulierte Ansteuerung.
- Schnellentmagnetisierung mit einer Gegenspannung von 27,5 V, maximal alle 5 s
- Stromüberwachung

Die Ansteuerung, Parametrierung sowie das Lesen der Rückmeldeeingänge der Bremse erfolgt über das eingebaute Sicherheitsmodul. Entsprechende Verschaltungs- und Parametriervorschläge sind im Sicherheitshandbuch Typ 5 beschrieben.

5	PD: (V40.4) PD (V40.0)	
Bezeichnung	BR+ (X1C.1); BR- (X1C.2)	
Funktion	Ausgang zur Ansteuerung einer/zwei Bremse(n) oder Relais	
DC-Ausgangsspannung	Minimal P24Vin -1,2V	
	Maximal P24Vin	
Maximalar Bromeonetrom	eine Bremse: 2A	
Maximaler Bremsenstrom	zwei Bremsen: 2 x 1A	
Sonstiges	Interner Freilaufzweig; interne Filterschaltung; nicht kurzschlussfest	
Tabelle 41: Spezifikation der Bremsenansteuerung für P-Steuerung		

ACHTUNG

Verwendung einer Bremse

► Eingangsspannungstoleranz der Bremse entsprechend der Toleranz der Ausgangsspannung auswählen.

4.4.2 Spezifikation und Anschluss der Temperaturerfassung

A GEFAHR

Nur Sensoren mit Basisisolierung oder sicherer Trennung verwenden! Lebensgefahr durch Stromschlag!

ACHTUNG

Störungen durch falsche Kabel oder Verlegung!

Fehlfunktionen der Steuerung durch kapazitive oder induktive Einkopplung.

- ▶ Leitungen vom Motortemperatursensor (auch geschirmt) nicht zusammen mit Steuerkabel verlegen!
- ▶ Leitungen vom Motortemperatursensor innerhalb vom Motorkabel nur mit doppelter Abschirmung zulässig!

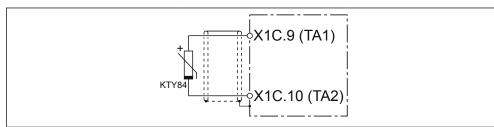
Im KEB COMBIVERT ist eine umschaltbare Auswertung implementiert. Die gewünschte Betriebsart ist per Software (dr33) einstellbar.

Ве	triebsart (dr33)	Widerstand	Temperatur/Status	
		0,49 kΩ	0°C	
0	0 KTY84/130	1 kΩ	100°C	
		1,72 kΩ	200°C	
	DT0 "0	< 0,75 kΩ	TA1-TA2 geschlossen	
1	PTC gemäß EN 60947-8	$0,751,5k\Omega$	Rückstellwiderstand	
'	(standard)	1,654 kΩ	Ansprechwiderstand	
	(Standard)	> 4 kΩ	TA1-TA2 offen	
2	Über Geber	digital über den Geberka	nnal	
		0,82 kΩ	0°C	
3	KTY83/110	1,67 kΩ	100°C	
		2,53 kΩ	175°C	
		1 kΩ	0°C	
4	PT1000	1,38 kΩ	100°C	
		1,75 kΩ	200°C	
	Übonyoobung	< 0,04 kΩ	Kurzschluss	
_	Überwachung	> 79,5 kΩ	Keine Verbindung (Fühlerbruch)	
Tabelle 42: Spezifikation des Temperatureingangs für P-Steuerung				

| Tabelle 42: | Spezifikation des Temperatureingangs für P-Steuerung

4.4.3 Betrieb ohne Temperaturerfassung

Verwendung des COMBIVERT ohne Auswertung des Temperatureingangs:

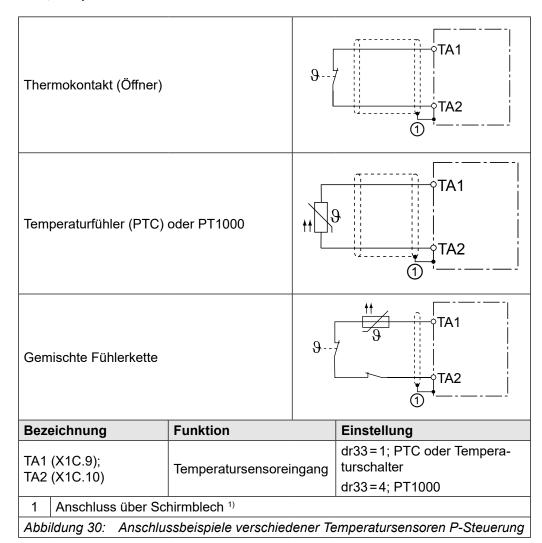

- Auswertung abschalten (pn12=7).
 oder
- Brücke zwischen Klemme TA1 (X1C.9) und TA2 (X1C.10) installieren (dr33 = 1).

4.4.4 Anschluss eines KTY-Sensors

ACHTUNG

Kein Schutz der Motorwicklung bei falschem Anschluss!

- ► KTY-Sensoren in Durchlassrichtung betreiben. Nichtbeachtung führt zu Fehlmessungen im oberen Temperaturbereich.
- ► KTY-Sensoren nicht mit anderen Erfassungen kombinieren.



Bezeichnung	Funktion	Einstellung
TA1 (X1C.9);	Tomporaturaopaoraingang	dr33=0; KTY84/130
TA2 (X1C.10)	Temperatursensoreingang	dr33=3; KTY83/110

Abbildung 29: Anschluss eines KTY-Sensors für P-Steuerung

BREMSENANSTEUERUNG UND TEMPERATURERFASSUNG FÜR P-STEUERUNG

4.4.5 Anschluss von PTC, Temperaturschalter oder PT1000

¹⁾ Falls nicht vorhanden, auf der Montageplatte auflegen.

5 Zertifizierung

5.1 CE-Kennzeichnung

CE gekennzeichnete Antriebsstromrichter sind in Übereinstimmung mit den Vorschriften der Niederspannungsrichtlinie und EMV-Richtlinie entwickelt und hergestellt worden. Die harmonisierten Normen der Reihe *EN 61800-5-1* und *EN 61800-3* werden angewendet.

Weitere Details im Downloadbereich von www.keb.de unter dem Suchbegriff "Konformitätserklärung".

5.2 Funktionale Sicherheit

Antriebsstromrichter mit funktionaler Sicherheit sind auf dem Typenschild mit dem FS-Logo gekennzeichnet. Diese Geräte sind in Übereinstimmung mit der Maschinenrichtlinie entwickelt und hergestellt worden. Die harmonisierte Norm der Reihe *EN 61800-5-2* wird angewendet.

5.3 Anhang zur Konformitätserklärung

Anhang zur EG Konformitätserklärung für Systeme mit funktionaler Sicherheit:

Produktbezeichnung:	Antriebsstromrichter - Typenreihe	xxS6xxx-xxxx
	Grösse	07 - 14
	Spannungsklasse	200 V / 400 V

Hiermit erklären wir, dass das oben beschriebene Sicherheitsbauteil allen einschlägigen Bestimmungen der Maschinenrichtlinie entspricht.

Das oben genannte Sicherheitsbauteil erfüllt die Anforderungen der nachfolgend genannten Richtlinien und Normen:

•	Maschinenrichtlinie	2006/42/EG
•	EMV-Richtlinie	2014/30/EU
•	Niederspannungsrichtlinie	2014/35/EU
•	Gefährliche Substanzen	2011/65/EU

ANHANG ZUR KONFORMITÄTSERKLÄRUNG

EN-Norm	Bezeichnung	Referenz				
EN 61800-5-1	EN 61800-5-1 Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl: Anforderungen an die Sicherheit					
EN61800-2	Grundlegende Festlegungen für AC – Antriebsstromrichter	VDE 0160-102				
EN61800-3	EMV Produktnorm für elektrische Antriebssysteme	VDE 0160-103				
lm speziellen für S	Im speziellen für Systeme mit funktionaler Sicherheit zusätzlich:					
EN 61800-5-2	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl: Anforderungen an die Funktionale Sicherheit	VDE 0160-105 -2				
EN 61508-(17)	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer programmierbarer elektronischer Steuerungssysteme	VDE 0803-17				
EN 60204-1	Sicherheit von Maschinen - Elektrische Ausrüstungen Teil1: Allgemeine Anforderungen	VDE 0113-1				
EN 62061	Sicherheit von Maschinen - Funktionale Sicherheit sicherheits- bezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme	VDE 0113 -50				
EN 13849-1	Sicherheit von Maschinen - sicherheitsbezogeneTeile von Steuerungen	_				
Tabelle 43: Angewandte Normen						

Die Konformität wurde vom TÜV Rheinland mit der EG-Baumusterprüfbescheinigung 01/205/5421.00/14 bestätigt.

Die Nummer Adresse der benannten Stelle ist:

NB 0035

TÜV Rheinland Industrie Service GmbH

Alboinstr. 56, 12103 Berlin Germany

Tel.: +49 30 7562-1557 Fax: +49 30 7562-1370 E-Mail: tuvat@de.tuv.com

5.4 UL-Kennzeichnung

Eine Abnahme gemäß UL ist bei KEB Antriebsstromrichtern auf dem Typenschild durch nebenstehendes Logo gekennzeichnet.

Zur Konformität gemäß UL für einen Einsatz auf dem nordamerikanischen und kanadischen Markt sind folgende zusätzliche Hinweise unbedingt zu beachten (englischer Originaltext):

- Only for use in grounded WYE supply sources.
- Rating of relays on Control Board A or Control Board K (30Vdc.:1A).
- Maximum Surrounding Air Temperature 45°C.
- Internal Overload Protection Operates prior to reaching the 200% of the Motor Full Load Current.
- S6, Housing Size 2 (1 phase Models 07S6 and 09S6):

Suitable For Use On A Circuit Capable Of Delivering Not More Than 5000 rms Symmetrical Amperes, yyy Volts Maximum when protected by CC or J Class Fuses or by a Manual Motor Controller,type E as specified in the instruction manual

S6, Housing Size 2 (1 phase Models: 07S6 and 09S6):

Suitable For Use On A Circuit Capable Of Delivering Not More Than 30000 rms Symmetrical Amperes, yyy Volts Maximum when protected by CC Class Fuses as specified in the instruction manual

S6, Housing Size 2(3 phase Models: 07S6, 09S6 and 10S6):

Suitable For Use On A Circuit Capable Of Delivering Not More Than 30000 rms Symmetrical Amperes, xxx Volts Maximum when protected by CC Class Fuses or by Manual Motor Controllers type E ", see instruction manual for Branch Circuit Protection details.

S6, Housing Size 2 (3 phase Models: 07S6, 09S6 and 10S6): "Suitable For Use On A Circuit Capable Of Delivering Not More Than 5000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Circuit Breakers", see instruction manual for Branch Circuit Protection details ".

Where:

xxx = 230V for 200-230V models and 480V for 480V models

yyy = 120V for 120V models and 230V for 230V models

- Integral solid state short circuit protection does not provide branch circuit protection.
 Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code, the Canadian Electrical code, part I, and any additional local codes.
- Use in a Pollution Degree 2 environment.
- Terminals X1A/X1B: Housing size 2, model 09S6, single phase 230V units: "only for use with stranded wires"
- Use 60/75°C Copper Conductors Only.

weiter auf nächster Seite

- During the UL evaluation, only Risk of Electrical Shock and Risk of Fire aspects were investigated. Functional Safety aspects were not evaluated.
- Wiring Terminals marked to indicate proper connections for the power supply, load and control circuit.
- WARNING The opening of the branch circuit protective device may be an indication that a fault current has been interrupted. To reduce the risk of fire or electrical shock, current-carrying parts and other components of the controller should be examined and replaced if damaged. If burnout of the current element of an overload relay occurs, the complete overload relay must be replaced.

AVERTISSEMENT – LE DÉCLENCHEMENT DU DISPOSITIF DE PROTECTION DU CIRCUIT DE DÉRIVATION PEUT ÊTRE DÛ À UNE COUPURE QUI RÉSULTE D'UN COURANT DE DÉFAUT. POUR LIMITER LE RISQUE D'INCENDIE OU DE CHOC ÉLECTRIQUE, EXAMINER LES PIÈCES PORTEUSES DE COURANT ET LES AUTRES ÉLÉMENTS DU CONTRÔLEUR ET LES REMPLACER S'ILS SONT ENDOMMAGÉS. EN CAS DE GRILLAGE DE L'ÉLÉMENT TRAVERSÉ PAR LE COURANT DANS UN RELAIS DE SURCHARGE, LE RELAIS TOUT ENTIER DOIT ÊTRE REMPLACÉ.

Devices 07, 09 and 10 / 480V – housing 2 have been evaluated for connecting to DC voltage, supplied by other KEB inverters to a DC bus capacitance as follows:

Cat. No.	Housing	Min. capacitance	Max. capacitance
07S6			
09S6	02	235uF	18600 uF
10S6			

Cat. No.	Housing	DC voltage	Full Load Current
07S6			3.6 A
09S6	02	680 V	5.8 A
10S6			8 A

Branch Circuit Protection for series S6 housing size 2

I) Class CC fuses; not more than 30000 rms Symmetrical Amperes (SCCR 30kA):

Cat. No.	Housing	Input Voltage [Vac]	maximum Fuse size [A]
07S6		200-230 / 3ph	6
09S6	02	•	10
10S6]	480 / 3ph	10

The voltage rating of the external fuses shall be at least equal to the input voltage of the drives.

Class CC or Class J, not more than 5000 rms Symmetrical Amperes (SCCR 5000): Class CC not more than 30000 rms Symmetrical Amperes (SCCR 30000):

Cat. No.	Housing	Input Voltage [Vac]	maximum Fuse size [A]
07S6	02	120-230 / 1ph	15
09S6			20

II) Listed (NKHJ, NKHJ7/CSA Certified), Type E Self Protected Manual Motor Controllers, Type and manufacturer and electrical ratings as specified below:

120-230V/1ph S6 Models:

Manual Motor Controller; not more than 5000 rms Symmetrical Amperes (SCCR 5kA):

Cat. No.	Housing	Manufacturer	Type	Rating
07S6	00	-4	PKZM0 20-E	115V/1ph, 1.5 hp
09S6	02	Eaton		230V/1ph, 3hp

200-230V/3ph S6 Models:

Manual Motor Controller; not more than 30000 rms Symmetrical Amperes (SCCR 30kA):

Cat. No.	Housing	Manufacturer	Туре	Rating
07S6				
09S6	02	Eaton	PKZM0 10-E	200V-230V/3ph, 3hp
10S6				

480V Models/3ph S6 Models:

Manual Motor Controller; not more than 30000 rms Symmetrical Amperes (SCCR 30kA):

Cat. No.	Housing	Manufacturer	Туре	Rating
07S6				
09S6	02	Eaton	PKZM0 10-E	480Y/277V/3ph, 7.5hp
10S6				

III) Listed (DIVQ, DIVQ7/CSA Certified), Listed Circuit Breaker, Type and manufacturer and electrical ratings as specified below:

480V Models/3ph S6 Models:

Cat. No.	Housing	Manufacturer	Type	Rating
07S6				480Y/277Vac
09S6	02	Siemens	5SJ4310-7HG42	
10S6				10A

Following models were investigated for use with DC supply at their DC terminals:

DC Circuit Protection for series S6 housing size 2 480V/3ph Models:

Cat. No.	Housing	Manufacturer	Туре	Rating
07S6			50 118 06.08	700V / 8A
09S6	02	SIBA	50 118 06.12	700V / 12A
10S6			50 118 06.16	700V / 16A

5.5 Weitere Informationen und Dokumentation

Ergänzende Anleitungen und Hinweise zum Download finden Sie unter www.keb.de/de/service/downloads

Allgemeine Anleitungen

- · EMV- und Sicherheitshinweise
- Anleitungen für weitere Steuerkarten, Sicherheitsmodule, Feldbusmodule, etc.

Anleitungen für Konstruktion und Entwicklung

- Eingangssicherungen gemäß UL
- Programmierhandbuch für Steuer- und Leistungsteil
- Motorkonfigurator, zur Auswahl des richtigen Antriebsstromrichters, sowie zur Erstellung von Downloads zur Parametrierung des Antriebsstromrichters

Zulassungen und Approbationen

- CE-Konformitätserklärung
- TÜV-Bescheinigung
- FS-Zertifizierung

Sonstiges

- COMBIVIS, die Software zur komfortablen Parametrierung der Antriebsstromrichter über einen PC (per Download erhältlich)
- EPLAN-Zeichnungen

6 Änderungshistorie

Version	Datum	Beschreibung
00	2014-08	Vorversion
01	2014-12	Erste freigegebene Version
02	2015-01	UL-Beschreibung um Sicherungstyp Class CC ergänzt
03	2015-05	Geräte ohne Filter aufgenommen, Vorwort geändert
04	2015-11	Allg. technische Daten komplett überarbeitet, Verlustleistung ergänzt, UL-Beschreibung erweitert
05	2017-07	Änderung auf neue CI-Optik, Überarbeitung der Gerätedaten, Änderung der Übersicht, Anpassung der Sicherungsdaten
06	2018-11	230 V-Variante hinzugefügt, Klemmleiste X1C mit aufgenommen
07	2019-02	Ableitströme für 230V-Klasse aufgenommen
08	2019-04	Reduzierung der Ableitströme < 5 mA eingefügt; Typenschlüssel überarbeitet
09	2019-12	Anpassung des Typenschlüssels, Redaktionelle Änderungen
10	2020-11	Einfügen der Einbautiefe
11	2021-05	Einfügen des Kapitels "Ableitströme", Redaktionelle Änderungen

NOTIZEN

Benelux | KEB Automation KG

Dreef 4 - box 4 1703 Dilbeek Belgien

Tel: +32 2 447 8580

Brasilien | KEB SOUTH AMERICA - Regional Manager

Rua Dr. Omar Pacheco Souza Riberio, 70

CEP 13569-430 Portal do Sol, São Carlos Brasilien

Tel: +55 16 31161294 E-Mail: roberto.arias@keb.de

China | KEB Power Transmission Technology (Shanghai) Co. Ltd.

No. 435 QianPu Road Chedun Town Songjiang District

201611 Shanghai P. R. China

Tel: +86 21 37746688 Fax: +86 21 37746600

Deutschland | Getriebemotorenwerk

KEB Antriebstechnik GmbH

Wildbacher Straße 5 08289 Schneeberg Deutschland

Telefon +49 3772 67-0 Telefax +49 3772 67-281

Frankreich | Société Française KEB SASU

Z.I. de la Croix St. Nicolas 14, rue Gustave Eiffel

94510 La Queue en Brie Frankreich

Tel: +33 149620101 Fax: +33 145767495

Großbritannien | KEB (UK) Ltd.

5 Morris Close Park Farm Indusrial Estate

Wellingborough, Northants, NN8 6 XF Großbritannien

Tel: +44 1933 402220 Fax: +44 1933 400724

Italien | KEB Italia S.r.l. Unipersonale

Via Newton, 2 20019 Settimo Milanese (Milano) Italien

Tel: +39 02 3353531 Fax: +39 02 33500790

Japan | KEB Japan Ltd.

15 - 16, 2 - Chome, Takanawa Minato-ku Tokyo 108 - 0074 Japan

Tel: +81 33 445-8515 Fax: +81 33 445-8215

Österreich | KEB Automation GmbH

Ritzstraße 8 4614 Marchtrenk Österreich

Tel: +43 7243 53586-0 Fax: +43 7243 53586-21

Polen | KEB Automation KG

Tel: +48 60407727

Russische Föderation | KEB RUS Ltd.

Lesnaya str, house 30 Dzerzhinsky MO

140091 Moscow region Russische Föderation

Tel: +7 495 6320217 Fax: +7 495 6320217

Schweiz | KEB Automation AG

Witzbergstraße 24 8330 Pfäffikon/ZH Schweiz

Tel: +41 43 2886060 Fax: +41 43 2886088

Spanien | KEB Automation KG

c / Mitjer, Nave 8 - Pol. Ind. LA MASIA

08798 Sant Cugat Sesgarrigues (Barcelona) Spanien

Tel: +34 93 8970268 Fax: +34 93 8992035

E-Mail: vb.espana@keb.de

Südkorea | KEB Automation KG

Deoksan-Besttel 1132 ho Sangnam-ro 37

Seongsan-gu Changwon-si Gyeongsangnam-do Republik Korea

Tel: +82 55 601 5505 Fax: +82 55 601 5506

Tschechien | KEB Automation GmbH

Videnska 188/119d 61900 Brno Tschechien

Tel: +420 544 212 008

USA | KEB America, Inc

5100 Valley Industrial Blvd. South Shakopee, MN 55379 USA

Tel: +1 952 2241400 Fax: +1 952 2241499

WEITERE KEB PARTNER WELTWEIT:

... www.keb.de/de/kontakt/kontakt-weltweit

Automation mit Drive

www.keb.de

KEB Automation KG Südstraße 38 32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de